Abstract:The effectiveness of credit assignment in reinforcement learning (RL) when dealing with high-dimensional data is influenced by the success of representation learning via deep neural networks, and has implications for the sample efficiency of deep RL algorithms. Input decorrelation has been previously introduced as a method to speed up optimization in neural networks, and has proven impactful in both efficient deep learning and as a method for effective representation learning for deep RL algorithms. We propose a novel approach to online decorrelation in deep RL based on the decorrelated backpropagation algorithm that seamlessly integrates the decorrelation process into the RL training pipeline. Decorrelation matrices are added to each layer, which are updated using a separate decorrelation learning rule that minimizes the total decorrelation loss across all layers, in parallel to minimizing the usual RL loss. We used our approach in combination with the soft actor-critic (SAC) method, which we refer to as decorrelated soft actor-critic (DSAC). Experiments on the Atari 100k benchmark with DSAC shows, compared to the regular SAC baseline, faster training in five out of the seven games tested and improved reward performance in two games with around 50% reduction in wall-clock time, while maintaining performance levels on the other games. These results demonstrate the positive impact of network-wide decorrelation in deep RL for speeding up its sample efficiency through more effective credit assignment.
Abstract:Speech separation approaches for single-channel, dry speech mixtures have significantly improved. However, real-world spatial and reverberant acoustic environments remain challenging, limiting the effectiveness of these approaches for assistive hearing devices like cochlear implants (CIs). To address this, we quantify the impact of real-world acoustic scenes on speech separation and explore how spatial cues can enhance separation quality efficiently. We analyze performance based on implicit spatial cues (inherent in the acoustic input and learned by the model) and explicit spatial cues (manually calculated spatial features added as auxiliary inputs). Our findings show that spatial cues (both implicit and explicit) improve separation for mixtures with spatially separated and nearby talkers. Furthermore, spatial cues enhance separation when spectral cues are ambiguous, such as when voices are similar. Explicit spatial cues are particularly beneficial when implicit spatial cues are weak. For instance, single CI microphone recordings provide weaker implicit spatial cues than bilateral CIs, but even single CIs benefit from explicit cues. These results emphasize the importance of training models on real-world data to improve generalizability in everyday listening scenarios. Additionally, our statistical analyses offer insights into how data properties influence model performance, supporting the development of efficient speech separation approaches for CIs and other assistive devices in real-world settings.
Abstract:Brain-inspired learning in physical hardware has enormous potential to learn fast at minimal energy expenditure. One of the characteristics of biological learning systems is their ability to learn in the presence of various noise sources. Inspired by this observation, we introduce a novel noise-based learning approach for physical systems implementing multi-layer neural networks. Simulation results show that our approach allows for effective learning whose performance approaches that of the conventional effective yet energy-costly backpropagation algorithm. Using a spintronics hardware implementation, we demonstrate experimentally that learning can be achieved in a small network composed of physical stochastic magnetic tunnel junctions. These results provide a path towards efficient learning in general physical systems which embraces rather than mitigates the noise inherent in physical devices.
Abstract:Distributed optimization is fundamental to modern machine learning applications like federated learning, but existing methods often struggle with ill-conditioned problems and face stability-versus-speed tradeoffs. We introduce fractional order distributed optimization (FrODO); a theoretically-grounded framework that incorporates fractional-order memory terms to enhance convergence properties in challenging optimization landscapes. Our approach achieves provable linear convergence for any strongly connected network. Through empirical validation, our results suggest that FrODO achieves up to 4 times faster convergence versus baselines on ill-conditioned problems and 2-3 times speedup in federated neural network training, while maintaining stability and theoretical guarantees.
Abstract:Learning is a fundamental property of intelligent systems, observed across biological organisms and engineered systems. While modern intelligent systems typically rely on gradient descent for learning, the need for exact gradients and complex information flow makes its implementation in biological and neuromorphic systems challenging. This has motivated the exploration of alternative learning mechanisms that can operate locally and do not rely on exact gradients. In this work, we introduce a novel approach that leverages noise in the parameters of the system and global reinforcement signals. Using an Ornstein-Uhlenbeck process with adaptive dynamics, our method balances exploration and exploitation during learning, driven by deviations from error predictions, akin to reward prediction error. Operating in continuous time, Orstein-Uhlenbeck adaptation (OUA) is proposed as a general mechanism for learning dynamic, time-evolving environments. We validate our approach across diverse tasks, including supervised learning and reinforcement learning in feedforward and recurrent systems. Additionally, we demonstrate that it can perform meta-learning, adjusting hyper-parameters autonomously. Our results indicate that OUA provides a viable alternative to traditional gradient-based methods, with potential applications in neuromorphic computing. It also hints at a possible mechanism for noise-driven learning in the brain, where stochastic neurotransmitter release may guide synaptic adjustments.
Abstract:Implementing AI algorithms on event-based embedded devices enables real-time processing of data, minimizes latency, and enhances power efficiency in edge computing. This research explores the deployment of a spiking recurrent neural network (SRNN) with liquid time constant neurons for gesture recognition. We focus on the energy efficiency and computational efficacy of NVIDIA Jetson Nano embedded GPU platforms. The embedded GPU showcases a 14-fold increase in power efficiency relative to a conventional GPU, making a compelling argument for its use in energy-constrained applications. The study's empirical findings also highlight that batch processing significantly boosts frame rates across various batch sizes while maintaining accuracy levels well above the baseline. These insights validate the SRNN with liquid time constant neurons as a robust model for interpreting temporal-spatial data in gesture recognition, striking a critical balance between processing speed and power frugality.
Abstract:Artificial intelligence (AI) techniques are increasingly being applied to solve control problems. However, control systems developed in AI are often black-box methods, in that it is not clear how and why they generate their outputs. A lack of transparency can be problematic for control tasks in particular, because it complicates the identification of biases or errors, which in turn negatively influences the user's confidence in the system. To improve the interpretability and transparency in control systems, the black-box structure can be replaced with white-box symbolic policies described by mathematical expressions. Genetic programming offers a gradient-free method to optimise the structure of non-differentiable mathematical expressions. In this paper, we show that genetic programming can be used to discover symbolic control systems. This is achieved by learning a symbolic representation of a function that transforms observations into control signals. We consider both systems that implement static control policies without memory and systems that implement dynamic memory-based control policies. In case of the latter, the discovered function becomes the state equation of a differential equation, which allows for evidence integration. Our results show that symbolic policies are discovered that perform comparably with black-box policies on a variety of control tasks. Furthermore, the additional value of the memory capacity in the dynamic policies is demonstrated on experiments where static policies fall short. Overall, we demonstrate that white-box symbolic policies can be optimised with genetic programming, while offering interpretability and transparency that lacks in black-box models.
Abstract:A significant increase in the commercial use of deep neural network models increases the need for efficient AI. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers while keeping network performance at a maximum. This can significantly reduce the inference time of a deep network and thus enhance its efficiency. Few of the previous works have exploited the ability to recover performance by reorganizing network parameters while pruning. In this work, we propose to create a subspace from unit activations which enables node pruning while recovering maximum accuracy. We identify that for effective node pruning, a subspace can be created using a triangular transformation matrix, which we show to be equivalent to Gram-Schmidt orthogonalization, which automates this procedure. We further improve this method by reorganizing the network prior to subspace formation. Finally, we leverage the orthogonal subspaces to identify layer-wise pruning ratios appropriate to retain a significant amount of the layer-wise information. We show that this measure outperforms existing pruning methods on VGG networks. We further show that our method can be extended to other network architectures such as residual networks.
Abstract:Recurrent neural networks (RNNs) hold immense potential for computations due to their Turing completeness and sequential processing capabilities, yet existing methods for their training encounter efficiency challenges. Backpropagation through time (BPTT), the prevailing method, extends the backpropagation (BP) algorithm by unrolling the RNN over time. However, this approach suffers from significant drawbacks, including the need to interleave forward and backward phases and store exact gradient information. Furthermore, BPTT has been shown to struggle with propagating gradient information for long sequences, leading to vanishing gradients. An alternative strategy to using gradient-based methods like BPTT involves stochastically approximating gradients through perturbation-based methods. This learning approach is exceptionally simple, necessitating only forward passes in the network and a global reinforcement signal as feedback. Despite its simplicity, the random nature of its updates typically leads to inefficient optimization, limiting its effectiveness in training neural networks. In this study, we present a new approach to perturbation-based learning in RNNs whose performance is competitive with BPTT, while maintaining the inherent advantages over gradient-based learning. To this end, we extend the recently introduced activity-based node perturbation (ANP) method to operate in the time domain, leading to more efficient learning and generalization. Subsequently, we conduct a range of experiments to validate our approach. Our results show similar performance, convergence time and scalability when compared to BPTT, strongly outperforming standard node perturbation and weight perturbation methods. These findings suggest that perturbation-based learning methods offer a versatile alternative to gradient-based methods for training RNNs.
Abstract:The backpropagation algorithm remains the dominant and most successful method for training deep neural networks (DNNs). At the same time, training DNNs at scale comes at a significant computational cost and therefore a high carbon footprint. Converging evidence suggests that input decorrelation may speed up deep learning. However, to date, this has not yet translated into substantial improvements in training efficiency in large-scale DNNs. This is mainly caused by the challenge of enforcing fast and stable network-wide decorrelation. Here, we show for the first time that much more efficient training of very deep neural networks using decorrelated backpropagation is feasible. To achieve this goal we made use of a novel algorithm which induces network-wide input decorrelation using minimal computational overhead. By combining this algorithm with careful optimizations, we obtain a more than two-fold speed-up and higher test accuracy compared to backpropagation when training a 18-layer deep residual network. This demonstrates that decorrelation provides exciting prospects for efficient deep learning at scale.