Abstract:This study examines the potential causal relationship between head injury and the risk of developing Alzheimer's disease (AD) using Bayesian networks and regression models. Using a dataset of 2,149 patients, we analyze key medical history variables, including head injury history, memory complaints, cardiovascular disease, and diabetes. Logistic regression results suggest an odds ratio of 0.88 for head injury, indicating a potential but statistically insignificant protective effect against AD. In contrast, memory complaints exhibit a strong association with AD, with an odds ratio of 4.59. Linear regression analysis further confirms the lack of statistical significance for head injury (coefficient: -0.0245, p = 0.469) while reinforcing the predictive importance of memory complaints. These findings highlight the complex interplay of medical history factors in AD risk assessment and underscore the need for further research utilizing larger datasets and advanced causal modeling techniques.
Abstract:Distributed optimization is fundamental to modern machine learning applications like federated learning, but existing methods often struggle with ill-conditioned problems and face stability-versus-speed tradeoffs. We introduce fractional order distributed optimization (FrODO); a theoretically-grounded framework that incorporates fractional-order memory terms to enhance convergence properties in challenging optimization landscapes. Our approach achieves provable linear convergence for any strongly connected network. Through empirical validation, our results suggest that FrODO achieves up to 4 times faster convergence versus baselines on ill-conditioned problems and 2-3 times speedup in federated neural network training, while maintaining stability and theoretical guarantees.