Abstract:Genetic Algorithms have established their capability for solving many complex optimization problems. Even as good solutions are produced, the user's understanding of a problem is not necessarily improved, which can lead to a lack of confidence in the results. To mitigate this issue, explainability aims to give insight to the user by presenting them with the knowledge obtained by the algorithm. In this paper we introduce Partial Solutions in order to improve the explainability of solutions to combinatorial optimization problems. Partial Solutions represent beneficial traits found by analyzing a population, and are presented to the user for explainability, but also provide an explicit model from which new solutions can be generated. We present an algorithm that assembles a collection of Partial Solutions chosen to strike a balance between high fitness, simplicity and atomicity. Experiments with standard benchmarks show that the proposed algorithm is able to find Partial Solutions which improve explainability at reasonable computational cost without affecting search performance.
Abstract:Artificial intelligence (AI) has driven many information and communication technology (ICT) breakthroughs. Nonetheless, the scope of ICT systems has expanded far beyond AI since the Turing test proposal. Critically, recent AI regulation proposals adopt AI definitions affecting ICT techniques, approaches, and systems that are not AI. In some cases, even works from mathematics, statistics, and engineering would be affected. Worryingly, AI misdefinitions are observed from Western societies to the Global South. In this paper, we propose a framework to score how validated as appropriately-defined for regulation (VADER) an AI definition is. Our online, publicly-available VADER framework scores the coverage of premises that should underlie AI definitions for regulation, which aim to (i) reproduce principles observed in other successful technology regulations, and (ii) include all AI techniques and approaches while excluding non-AI works. Regarding the latter, our score is based on a dataset of representative AI, non-AI ICT, and non-ICT examples. We demonstrate our contribution by reviewing the AI regulation proposals of key players, namely the United States, United Kingdom, European Union, and Brazil. Importantly, none of the proposals assessed achieve the appropriateness score, ranging from a revision need to a concrete risk to ICT systems and works from other fields.
Abstract:A health crisis is raging all over the world with the rapid transmission of the novel-coronavirus disease (Covid-19). Out of the guidelines issued by the World Health Organisation (WHO) to protect us against Covid-19, wearing a facemask is the most effective. Many countries have necessitated the wearing of face masks, but monitoring a large number of people to ensure that they are wearing masks in a crowded place is a challenging task in itself. The novel-coronavirus disease (Covid-19) has already affected our day-to-day life as well as world trade movements. By the end of April 2021, the world has recorded 144,358,956 confirmed cases of novel-coronavirus disease (Covid-19) including 3,066,113 deaths according to the world health organization (WHO). These increasing numbers motivate automated techniques for the detection of a facemask in real-time scenarios for the prevention of Covid-19. We propose a technique using deep learning that works for single and multiple people in a frame recorded via webcam in still or in motion. We have also experimented with our approach in night light. The accuracy of our model is good compared to the other approaches in the literature; ranging from 74% for multiple people in a nightlight to 99% for a single person in daylight.
Abstract:In this study, we present a novel hybrid algorithm, combining Levy Flight (LF) and Particle Swarm Optimization (PSO) (LF-PSO), tailored for efficient multi-robot exploration in unknown environments with limited communication and no global positioning information. The research addresses the growing interest in employing multiple autonomous robots for exploration tasks, particularly in scenarios such as Urban Search and Rescue (USAR) operations. Multiple robots offer advantages like increased task coverage, robustness, flexibility, and scalability. However, existing approaches often make assumptions such as search area, robot positioning, communication restrictions, and target information that may not hold in real-world situations. The hybrid algorithm leverages LF, known for its effectiveness in large space exploration with sparse targets, and incorporates inter-robot repulsion as a social component through PSO. This combination enhances area exploration efficiency. We redefine the local best and global best positions to suit scenarios without continuous target information. Experimental simulations in a controlled environment demonstrate the algorithm's effectiveness, showcasing improved area coverage compared to traditional methods. In the process of refining our approach and testing it in complex, obstacle-rich environments, the presented work holds promise for enhancing multi-robot exploration in scenarios with limited information and communication capabilities.
Abstract:Large language models (LLMs) have been successfully applied to software engineering tasks, including program repair. However, their application in search-based techniques such as Genetic Improvement (GI) is still largely unexplored. In this paper, we evaluate the use of LLMs as mutation operators for GI to improve the search process. We expand the Gin Java GI toolkit to call OpenAI's API to generate edits for the JCodec tool. We randomly sample the space of edits using 5 different edit types. We find that the number of patches passing unit tests is up to 75% higher with LLM-based edits than with standard Insert edits. Further, we observe that the patches found with LLMs are generally less diverse compared to standard edits. We ran GI with local search to find runtime improvements. Although many improving patches are found by LLM-enhanced GI, the best improving patch was found by standard GI.
Abstract:The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to reduce the cost of moving goods between several destinations while accommodating constraints like set time windows for certain locations and vehicle capacity. Applications of the VRPTW problem in the real world include Supply Chain Management (SCM) and logistic dispatching, both of which are crucial to the economy and are expanding quickly as work habits change. Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle Swarm Optimization (PSO) have been found to work effectively, however, they can experience premature convergence. To lower the risk of PSO's premature convergence, the authors have solved VRPTW in this paper utilising a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature. Also, comparisons with two cutting-edge algorithms from the literature show how competitive the suggested algorithm is.
Abstract:Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to support the development, analysis and comparison of new approaches. We argue that, via principled choice of infrastructure support, the field can pursue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.