Abstract:Large Language Model (LLM) safety is inherently pluralistic, reflecting variations in moral norms, cultural expectations, and demographic contexts. Yet, existing alignment datasets such as ANTHROPIC-HH and DICES rely on demographically narrow annotator pools, overlooking variation in safety perception across communities. Demo-SafetyBench addresses this gap by modeling demographic pluralism directly at the prompt level, decoupling value framing from responses. In Stage I, prompts from DICES are reclassified into 14 safety domains (adapted from BEAVERTAILS) using Mistral 7B-Instruct-v0.3, retaining demographic metadata and expanding low-resource domains via Llama-3.1-8B-Instruct with SimHash-based deduplication, yielding 43,050 samples. In Stage II, pluralistic sensitivity is evaluated using LLMs-as-Raters-Gemma-7B, GPT-4o, and LLaMA-2-7B-under zero-shot inference. Balanced thresholds (delta = 0.5, tau = 10) achieve high reliability (ICC = 0.87) and low demographic sensitivity (DS = 0.12), confirming that pluralistic safety evaluation can be both scalable and demographically robust.
Abstract:Large Language Models (LLMs) need to be in accordance with human values-being helpful, harmless, and honest (HHH)-is important for safe deployment. Existing works use Supervised Fine-Tuning (SFT) and Mixture-of-Experts (MoE) to align LLMs. However, these works face challenges in multi-objective settings, such as SFT leading to interference between conflicting objectives, while MoEs suffer from miscalibrated routing. We term this failure mode Axis Collapse, marked by (1) disjoint feature spaces causing catastrophic forgetting, and (2) unreliable inference from misrouted experts. To resolve this, we propose AlignX, a two-stage framework. Stage 1 uses prompt-injected fine-tuning to extract axis-specific task features, mitigating catastrophic forgetting. Stage 2 deploys a MoCaE module that calibrates expert routing using fractal and natural geometry, improving inference reliability. AlignX achieves significant gains on Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty), with +171.5% win rate, +110.1% in truthfulness-informativeness, and 4.3% fewer safety violations. It also reduces latency and memory usage by over 35% compared to prior MoEs. Results across four LLMs validate its generalizability.
Abstract:Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
Abstract:The rapid rise of deepfake technology poses a severe threat to social and political stability by enabling hyper-realistic synthetic media capable of manipulating public perception. However, existing detection methods struggle with two core limitations: (1) modality fragmentation, which leads to poor generalization across diverse and adversarial deepfake modalities; and (2) shallow inter-modal reasoning, resulting in limited detection of fine-grained semantic inconsistencies. To address these, we propose ConLLM (Contrastive Learning with Large Language Models), a hybrid framework for robust multimodal deepfake detection. ConLLM employs a two-stage architecture: stage 1 uses Pre-Trained Models (PTMs) to extract modality-specific embeddings; stage 2 aligns these embeddings via contrastive learning to mitigate modality fragmentation, and refines them using LLM-based reasoning to address shallow inter-modal reasoning by capturing semantic inconsistencies. ConLLM demonstrates strong performance across audio, video, and audio-visual modalities. It reduces audio deepfake EER by up to 50%, improves video accuracy by up to 8%, and achieves approximately 9% accuracy gains in audio-visual tasks. Ablation studies confirm that PTM-based embeddings contribute 9%-10% consistent improvements across modalities.
Abstract:Clinical Question-Answering (CQA) industry systems are increasingly rely on Large Language Models (LLMs), yet their deployment is often guided by the assumption that domain-specific fine-tuning is essential. Although specialised medical LLMs such as BioBERT, BioGPT, and PubMedBERT remain popular, they face practical limitations including narrow coverage, high retraining costs, and limited adaptability. Efforts based on Supervised Fine-Tuning (SFT) have attempted to address these assumptions but continue to reinforce what we term the SPECIALISATION FALLACY-the belief that specialised medical LLMs are inherently superior for CQA. To address this assumption, we introduce MEDASSESS-X, a deployment-industry-oriented CQA framework that applies alignment at inference time rather than through SFT. MEDASSESS-X uses lightweight steering vectors to guide model activations toward medically consistent reasoning without updating model weights or requiring domain-specific retraining. This inference-time alignment layer stabilises CQA performance across both general-purpose and specialised medical LLMs, thereby resolving the SPECIALISATION FALLACY. Empirically, MEDASSESS-X delivers consistent gains across all LLM families, improving Accuracy by up to +6%, Factual Consistency by +7%, and reducing Safety Error Rate by as much as 50%.




Abstract:Alignment of Large Language Models (LLMs) along multiple objectives-helpfulness, harmlessness, and honesty (HHH)-is critical for safe and reliable deployment. Prior work has used steering vector-small control signals injected into hidden states-to guide LLM outputs, typically via one-to-one (1-to-1) Transformer decoders. In this setting, optimizing a single alignment objective can inadvertently overwrite representations learned for other objectives, leading to catastrophic forgetting. More recent approaches extend steering vectors via one-to-many (1-to-N) Transformer decoders. While this alleviates catastrophic forgetting, naive multi-branch designs optimize each objective independently, which can cause inference fragmentation-outputs across HHH objectives may become inconsistent. We propose Adaptive Multi-Branch Steering (AMBS), a two-stage 1-to-N framework for unified and efficient multi-objective alignment. In Stage I, post-attention hidden states of the Transformer layer are computed once to form a shared representation. In Stage II, this representation is cloned into parallel branches and steered via a policy-reference mechanism, enabling objective-specific control while maintaining cross-objective consistency. Empirical evaluations on Alpaca, BeaverTails, and TruthfulQA show that AMBS consistently improves HHH alignment across multiple 7B LLM backbones. For example, on DeepSeek-7B, AMBS improves average alignment scores by +32.4% and reduces unsafe outputs by 11.0% compared to a naive 1-to-N baseline, while remaining competitive with state-of-the-art methods.
Abstract:Automated Audio Captioning (AAC) generates captions for audio clips but faces challenges due to limited datasets compared to image captioning. To overcome this, we propose the zero-shot AAC system that leverages pre-trained models, eliminating the need for extensive training. Our approach uses a pre-trained audio CLIP model to extract auditory features and generate a structured prompt, which guides a Large Language Model (LLM) in caption generation. Unlike traditional greedy decoding, our method refines token selection through the audio CLIP model, ensuring alignment with the audio content. Experimental results demonstrate a 35% improvement in NLG mean score (from 4.7 to 7.3) using MAGIC search with the WavCaps model. The performance is heavily influenced by the audio-text matching model and keyword selection, with optimal results achieved using a single keyword prompt, and a 50% performance drop when no keyword list is used.
Abstract:Large Language Models (LLMs) exhibit strong performance across a wide range of NLP tasks, yet aligning their outputs with the principles of Helpfulness, Harmlessness, and Honesty (HHH) remains a persistent challenge. Existing methods often optimize for individual alignment dimensions in isolation, leading to trade-offs and inconsistent behavior. While Mixture-of-Experts (MoE) architectures offer modularity, they suffer from poorly calibrated routing, limiting their effectiveness in alignment tasks. We propose TrinityX, a modular alignment framework that incorporates a Mixture of Calibrated Experts (MoCaE) within the Transformer architecture. TrinityX leverages separately trained experts for each HHH dimension, integrating their outputs through a calibrated, task-adaptive routing mechanism that combines expert signals into a unified, alignment-aware representation. Extensive experiments on three standard alignment benchmarks-Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty)-demonstrate that TrinityX outperforms strong baselines, achieving relative improvements of 32.5% in win rate, 33.9% in safety score, and 28.4% in truthfulness. In addition, TrinityX reduces memory usage and inference latency by over 40% compared to prior MoE-based approaches. Ablation studies highlight the importance of calibrated routing, and cross-model evaluations confirm TrinityX's generalization across diverse LLM backbones.




Abstract:In this work, we investigate multilingual speech Pre-Trained models (PTMs) for Audio deepfake detection (ADD). We hypothesize that multilingual PTMs trained on large-scale diverse multilingual data gain knowledge about diverse pitches, accents, and tones, during their pre-training phase and making them more robust to variations. As a result, they will be more effective for detecting audio deepfakes. To validate our hypothesis, we extract representations from state-of-the-art (SOTA) PTMs including monolingual, multilingual as well as PTMs trained for speaker and emotion recognition, and evaluated them on ASVSpoof 2019 (ASV), In-the-Wild (ITW), and DECRO benchmark databases. We show that representations from multilingual PTMs, with simple downstream networks, attain the best performance for ADD compared to other PTM representations, which validates our hypothesis. We also explore the possibility of fusion of selected PTM representations for further improvements in ADD, and we propose a framework, MiO (Merge into One) for this purpose. With MiO, we achieve SOTA performance on ASV and ITW and comparable performance on DECRO with current SOTA works.




Abstract:This groundbreaking study explores the expanse of Large Language Models (LLMs), such as Generative Pre-Trained Transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT) across varied domains ranging from technology, finance, healthcare to education. Despite their established prowess in Natural Language Processing (NLP), these LLMs have not been systematically examined for their impact on domains such as fitness, and holistic well-being, urban planning, climate modelling as well as disaster management. This review paper, in addition to furnishing a comprehensive analysis of the vast expanse and extent of LLMs' utility in diverse domains, recognizes the research gaps and realms where the potential of LLMs is yet to be harnessed. This study uncovers innovative ways in which LLMs can leave a mark in the fields like fitness and wellbeing, urban planning, climate modelling and disaster response which could inspire future researches and applications in the said avenues.