Abstract:A health crisis is raging all over the world with the rapid transmission of the novel-coronavirus disease (Covid-19). Out of the guidelines issued by the World Health Organisation (WHO) to protect us against Covid-19, wearing a facemask is the most effective. Many countries have necessitated the wearing of face masks, but monitoring a large number of people to ensure that they are wearing masks in a crowded place is a challenging task in itself. The novel-coronavirus disease (Covid-19) has already affected our day-to-day life as well as world trade movements. By the end of April 2021, the world has recorded 144,358,956 confirmed cases of novel-coronavirus disease (Covid-19) including 3,066,113 deaths according to the world health organization (WHO). These increasing numbers motivate automated techniques for the detection of a facemask in real-time scenarios for the prevention of Covid-19. We propose a technique using deep learning that works for single and multiple people in a frame recorded via webcam in still or in motion. We have also experimented with our approach in night light. The accuracy of our model is good compared to the other approaches in the literature; ranging from 74% for multiple people in a nightlight to 99% for a single person in daylight.
Abstract:Recently, Machine Learning (ML) has become a widely accepted method for significant progress that is rapidly evolving. Since it employs computational methods to teach machines and produce acceptable answers. The significance of the Machine Learning Operations (MLOps) methods, which can provide acceptable answers for such problems, is examined in this study. To assist in the creation of software that is simple to use, the authors research MLOps methods. To choose the best tool structure for certain projects, the authors also assess the features and operability of various MLOps methods. A total of 22 papers were assessed that attempted to apply the MLOps idea. Finally, the authors admit the scarcity of fully effective MLOps methods based on which advancements can self-regulate by limiting human engagement.
Abstract:The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to reduce the cost of moving goods between several destinations while accommodating constraints like set time windows for certain locations and vehicle capacity. Applications of the VRPTW problem in the real world include Supply Chain Management (SCM) and logistic dispatching, both of which are crucial to the economy and are expanding quickly as work habits change. Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle Swarm Optimization (PSO) have been found to work effectively, however, they can experience premature convergence. To lower the risk of PSO's premature convergence, the authors have solved VRPTW in this paper utilising a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature. Also, comparisons with two cutting-edge algorithms from the literature show how competitive the suggested algorithm is.