Heart rate variability (HRV) is a pivotal noninvasive marker for autonomic monitoring; however, applying Large Language Models (LLMs) to HRV interpretation is hindered by physiological hallucinations. These include respiratory sinus arrhythmia (RSA) contamination, short-data instability in nonlinear metrics, and the neglect of individualized baselines in favor of population norms. We propose C-GRASP (Clinically-Grounded Reasoning for Affective Signal Processing), a guardrailed RAG-enhanced pipeline that decomposes HRV interpretation into eight traceable reasoning steps. Central to C-GRASP is a Z-score Priority Hierarchy that enforces the weighting of individualized baseline shifts over normative statistics. The system effectively mitigates spectral hallucinations through automated RSA-aware guardrails, preventing contamination of frequency-domain indices. Evaluated on 414 trials from the DREAMER dataset, C-GRASP integrated with high-scale reasoning models (e.g., MedGemma3-thinking) achieved superior performance in 4-class emotion classification (37.3% accuracy) and a Clinical Reasoning Consistency (CRC) score of 69.6%. Ablation studies confirm that the individualized Delta Z-score module serves as the critical logical anchor, preventing the "population bias" common in native LLMs. Ultimately, C-GRASP transitions affective computing from black-box classification to transparent, evidence-based clinical decision support, paving the way for safer AI integration in biomedical engineering.
The electroencephalogram (EEG) has been the gold standard for quantifying mental workload; however, due to its complexity and non-portability, it can be constraining. ECG signals, which are feasible on wearable equipment pieces such as headbands, present a promising method for cognitive state monitoring. This research explores whether electrocardiogram (ECG) signals are able to indicate mental workload consistently and act as surrogates for EEG-based cognitive indicators. This study investigates whether ECG-derived features can serve as surrogate indicators of cognitive load, a concept traditionally quantified using EEG. Using a publicly available multimodal dataset (OpenNeuro) of EEG and ECG recorded during working-memory and listening tasks, features of HRV and Catch22 descriptors are extracted from ECG, and spectral band-power with Catch22 features from EEG. A cross-modal regression framework based on XGBoost was trained to map ECG-derived HRV representations to EEG-derived cognitive features. In order to address data sparsity and model brain-heart interactions, we integrated the PSV-SDG to produce EEG-conditioned synthetic HRV time series.This addresses the challenge of inferring cognitive load solely from ECG-derived features using a combination of multimodal learning, signal processing, and synthetic data generation. These outcomes form a basis for light, interpretable machine learning models that are implemented through wearable biosensors in non-lab environments. Synthetic HRV inclusion enhances robustness, particularly in sparse data situations. Overall, this work is an initiation for building low-cost, explainable, and real-time cognitive monitoring systems for mental health, education, and human-computer interaction, with a focus on ageing and clinical populations.
Understanding the interaction of neural and cardiac systems during cognitive activity is critical to advancing physiological computing. Although EEG has been the gold standard for assessing mental workload, its limited portability restricts its real-world use. Widely available ECG through wearable devices proposes a pragmatic alternative. This research investigates whether ECG signals can reliably reflect cognitive load and serve as proxies for EEG-based indicators. In this work, we present multimodal data acquired from two different paradigms involving working-memory and passive-listening tasks. For each modality, we extracted ECG time-domain HRV metrics and Catch22 descriptors against EEG spectral and Catch22 features, respectively. We propose a cross-modal XGBoost framework to project the ECG features onto EEG-representative cognitive spaces, thereby allowing workload inferences using only ECG. Our results show that ECG-derived projections expressively capture variation in cognitive states and provide good support for accurate classification. Our findings underpin ECG as an interpretable, real-time, wearable solution for everyday cognitive monitoring.
Deep learning has achieved strong performance for electrocardiogram (ECG) classification within individual datasets, yet dependable generalization across heterogeneous acquisition settings remains a major obstacle to clinical deployment and longitudinal monitoring. A key limitation of many model architectures is the implicit entanglement of morphological waveform patterns and rhythm dynamics, which can promote shortcut learning and amplify sensitivity to distribution shifts. We propose ECG-RAMBA, a framework that separates morphology and rhythm and then re-integrates them through context-aware fusion. ECG-RAMBA combines: (i) deterministic morphological features extracted by MiniRocket, (ii) global rhythm descriptors computed from heart-rate variability (HRV), and (iii) long-range contextual modeling via a bi-directional Mamba backbone. To improve sensitivity to transient abnormalities under windowed inference, we introduce a numerically stable Power Mean pooling operator ($Q=3$) that emphasizes high-evidence segments while avoiding the brittleness of max pooling and the dilution of averaging. We evaluate under a protocol-faithful setting with subject-level cross-validation, a fixed decision threshold, and no test-time adaptation. On the Chapman--Shaoxing dataset, ECG-RAMBA achieves a macro ROC-AUC $\approx 0.85$. In zero-shot transfer, it attains PR-AUC $=0.708$ for atrial fibrillation detection on the external CPSC-2021 dataset, substantially outperforming a comparable raw-signal Mamba baseline, and shows consistent cross-dataset performance on PTB-XL. Ablation studies indicate that deterministic morphology provides a strong foundation, while explicit rhythm modeling and long-range context are critical drivers of cross-domain robustness.
In precision sports such as archery, athletes' performance depends on both biomechanical stability and psychological resilience. Traditional motion analysis systems are often expensive and intrusive, limiting their use in natural training environments. To address this limitation, we propose a machine learning-based multimodal framework that integrates wearable sensor data for simultaneous action recognition and stress estimation. Using a self-developed wrist-worn device equipped with an accelerometer and photoplethysmography (PPG) sensor, we collected synchronized motion and physiological data during real archery sessions. For motion recognition, we introduce a novel feature--Smoothed Differential Acceleration (SmoothDiff)--and employ a Long Short-Term Memory (LSTM) model to identify motion phases, achieving 96.8% accuracy and 95.9% F1-score. For stress estimation, we extract heart rate variability (HRV) features from PPG signals and apply a Multi-Layer Perceptron (MLP) classifier, achieving 80% accuracy in distinguishing high- and low-stress levels. The proposed framework demonstrates that integrating motion and physiological sensing can provide meaningful insights into athletes' technical and mental states. This approach offers a foundation for developing intelligent, real-time feedback systems for training optimization in archery and other precision sports.
This report introduces VitalLens 2.0, a new deep learning model for estimating physiological signals from face video. This new model demonstrates a significant leap in accuracy for remote photoplethysmography (rPPG), enabling the robust estimation of not only heart rate (HR) and respiratory rate (RR) but also Heart Rate Variability (HRV) metrics. This advance is achieved through a combination of a new model architecture and a substantial increase in the size and diversity of our training data, now totaling 1,413 unique individuals. We evaluate VitalLens 2.0 on a new, combined test set of 422 unique individuals from four public and private datasets. When averaging results by individual, VitalLens 2.0 achieves a Mean Absolute Error (MAE) of 1.57 bpm for HR, 1.08 bpm for RR, 10.18 ms for HRV-SDNN, and 16.45 ms for HRV-RMSSD. These results represent a new state-of-the-art, significantly outperforming previous methods. This model is now available to developers via the VitalLens API at https://rouast.com/api.
Psychiatric disorders affect millions globally, yet their diagnosis faces significant challenges in clinical practice due to subjective assessments and accessibility concerns, leading to potential delays in treatment. To help address this issue, we present Heart2Mind, a human-centered contestable psychiatric disorder diagnosis system using wearable electrocardiogram (ECG) monitors. Our approach leverages cardiac biomarkers, particularly heart rate variability (HRV) and R-R intervals (RRI) time series, as objective indicators of autonomic dysfunction in psychiatric conditions. The system comprises three key components: (1) a Cardiac Monitoring Interface (CMI) for real-time data acquisition from Polar H9/H10 devices; (2) a Multi-Scale Temporal-Frequency Transformer (MSTFT) that processes RRI time series through integrated time-frequency domain analysis; (3) a Contestable Diagnosis Interface (CDI) combining Self-Adversarial Explanations (SAEs) with contestable Large Language Models (LLMs). Our MSTFT achieves 91.7% accuracy on the HRV-ACC dataset using leave-one-out cross-validation, outperforming state-of-the-art methods. SAEs successfully detect inconsistencies in model predictions by comparing attention-based and gradient-based explanations, while LLMs enable clinicians to validate correct predictions and contest erroneous ones. This work demonstrates the feasibility of combining wearable technology with Explainable Artificial Intelligence (XAI) and contestable LLMs to create a transparent, contestable system for psychiatric diagnosis that maintains clinical oversight while leveraging advanced AI capabilities. Our implementation is publicly available at: https://github.com/Analytics-Everywhere-Lab/heart2mind.
Wearable sensors are widely used to collect physiological data and develop stress detection models. However, most studies focus on a single dataset, rarely evaluating model reproducibility across devices, populations, or study conditions. We previously assessed the reproducibility of stress detection models across multiple studies, testing models trained on one dataset against others using heart rate (with R-R interval) and electrodermal activity (EDA). In this study, we extended our stress detection reproducibility to consumer wearable sensors. We compared validated research-grade devices, to consumer wearables - Biopac MP160, Polar H10, Empatica E4, to the Garmin Forerunner 55s, assessing device-specific stress detection performance by conducting a new stress study on undergraduate students. Thirty-five students completed three standardized stress-induction tasks in a lab setting. Biopac MP160 performed the best, being consistent with our expectations of it as the gold standard, though performance varied across devices and models. Combining heart rate variability (HRV) and EDA enhanced stress prediction across most scenarios. However, Empatica E4 showed variability; while HRV and EDA improved stress detection in leave-one-subject-out (LOSO) evaluations (AUROC up to 0.953), device-specific limitations led to underperformance when tested with our pre-trained stress detection tool (AUROC 0.723), highlighting generalizability challenges related to hardware-model compatibility. Garmin Forerunner 55s demonstrated strong potential for real-world stress monitoring, achieving the best mental arithmetic stress detection performance in LOSO (AUROC up to 0.961) comparable to research-grade devices like Polar H10 (AUROC 0.954), and Empatica E4 (AUROC 0.905 with HRV-only model and AUROC 0.953 with HRV+EDA model), with the added advantage of consumer-friendly wearability for free-living contexts.
The dynamic nature of human health and comfort calls for adaptive systems that respond to individual physiological needs in real time. This paper presents an AI-enhanced digital twin framework that integrates biometric signals, specifically electrocardiogram (ECG) data, with environmental parameters such as temperature, humidity, and ventilation. Leveraging IoT-enabled sensors and biometric monitoring devices, the system continuously acquires, synchronises, and preprocesses multimodal data streams to construct a responsive virtual replica of the physical environment. To validate this framework, a detailed case study is conducted using the MIT-BIH noise stress test dataset. ECG signals are filtered and segmented using dynamic sliding windows, followed by extracting heart rate variability (HRV) features such as SDNN, BPM, QTc, and LF/HF ratio. Relative deviation metrics are computed against clean baselines to quantify stress responses. A random forest classifier is trained to predict stress levels across five categories, and Shapley Additive exPlanations (SHAP) is used to interpret model behaviour and identify key contributing features. These predictions are mapped to a structured set of environmental interventions using a Five Level Stress Intervention Mapping, which activates multi-scale responses across personal, room, building, and landscape levels. This integration of physiological insight, explainable AI, and adaptive control establishes a new paradigm for health-responsive built environments. It lays the foundation for the future development of intelligent, personalised healing spaces.
Biosignal monitoring, in particular heart activity through heart rate (HR) and heart rate variability (HRV) tracking, is vital in enabling continuous, non-invasive tracking of physiological and cognitive states. Recent studies have explored compact, head-worn devices for HR and HRV monitoring to improve usability and reduce stigma. However, this approach is challenged by the current reliance on wet electrodes, which limits usability, the weakness of ear-derived signals, making HR/HRV extraction more complex, and the incompatibility of current algorithms for embedded deployment. This work introduces a single-ear wearable system for real-time ECG (Electrocardiogram) parameter estimation, which directly runs on BioGAP, an energy-efficient device for biosignal acquisition and processing. By combining SoA in-ear electrode technology, an optimized DeepMF algorithm, and BioGAP, our proposed subject-independent approach allows for robust extraction of HR/HRV parameters directly on the device with just 36.7 uJ/inference at comparable performance with respect to the current state-of-the-art architecture, achieving 0.49 bpm and 25.82 ms for HR/HRV mean errors, respectively and an estimated battery life of 36h with a total system power consumption of 7.6 mW. Clinical relevance: The ability to reconstruct ECG signals and extract HR and HRV paves the way for continuous, unobtrusive cardiovascular monitoring with head-worn devices. In particular, the integration of cardiovascular measurements in everyday-use devices (such as earbuds) has potential in continuous at-home monitoring to enable early detection of cardiovascular irregularities.