Abstract:This research presents an Encoded Spatial Multi-Tier Federated Learning approach for a comprehensive evaluation of aggregated models for geospatial data. In the client tier, encoding spatial information is introduced to better predict the target outcome. The research aims to assess the performance of these models across diverse datasets and spatial attributes, highlighting variations in predictive accuracy. Using evaluation metrics such as accuracy, our research reveals insights into the complexities of spatial granularity and the challenges of capturing underlying patterns in the data. We extended the scope of federated learning (FL) by having multi-tier along with the functionality of encoding spatial attributes. Our N-tier FL approach used encoded spatial data to aggregate in different tiers. We obtained multiple models that predicted the different granularities of spatial data. Our findings underscore the need for further research to improve predictive accuracy and model generalization, with potential avenues including incorporating additional features, refining model architectures, and exploring alternative modeling approaches. Our experiments have several tiers representing different levels of spatial aspects. We obtained accuracy of 75.62% and 89.52% for the global model without having to train the model using the data constituted with the designated tier. The research also highlights the importance of the proposed approach in real-time applications.
Abstract:Rodent has proven to be the premier model for behavioral studies. Rats and mice have been raised and maintained in conventional cage environment for investigations. In contrast, the enhanced naturalistic habitat has been demonstrated to be a better setting, especially when behaviors and social interactions are desired. The habitat enables rodents to perform all natural activities with intrinsic phenotypes and importantly, interactions among individuals. The important elements of behavioral studies related to animals is to have precise tracking and collect accurate signals of multiple animals during interactions. Most of the existing approaches use video tracking and thus often face difficulties as rodents are nocturnal and often stay in tunnels underground. Here, we employed the ultra wideband technology to establish a novel tracking method for both overground and underground circumstances. UWB model DWM1001C was used with a custom-made device worn by the animal. A simplified habitat with a size of four-by-two feet was designed to demonstrate the performance of the system. The study evaluated the positioning system accuracy errors below one centimeter for LoS and less than ten centimeters for the NLoS. Generally, this work provides a more accurate and proven experiment to localize the moving object in the indoor building with concrete structures and signal processing data and introduces novel advancement techniques to the use of UWB.
Abstract:Recent advancements in deep learning have significantly improved visual quality inspection and predictive maintenance within industrial settings. However, deploying these technologies on low-resource edge devices poses substantial challenges due to their high computational demands and the inherent complexity of Explainable AI (XAI) methods. This paper addresses these challenges by introducing a novel XAI-integrated Visual Quality Inspection framework that optimizes the deployment of semantic segmentation models on low-resource edge devices. Our framework incorporates XAI and the Large Vision Language Model to deliver human-centered interpretability through visual and textual explanations to end-users. This is crucial for end-user trust and model interpretability. We outline a comprehensive methodology consisting of six fundamental modules: base model fine-tuning, XAI-based explanation generation, evaluation of XAI approaches, XAI-guided data augmentation, development of an edge-compatible model, and the generation of understandable visual and textual explanations. Through XAI-guided data augmentation, the enhanced model incorporating domain expert knowledge with visual and textual explanations is successfully deployed on mobile devices to support end-users in real-world scenarios. Experimental results showcase the effectiveness of the proposed framework, with the mobile model achieving competitive accuracy while significantly reducing model size. This approach paves the way for the broader adoption of reliable and interpretable AI tools in critical industrial applications, where decisions must be both rapid and justifiable.
Abstract:Indoor localization plays a vital role in the era of the IoT and robotics, with WiFi technology being a prominent choice due to its ubiquity. We present a method for creating WiFi fingerprinting datasets to enhance indoor localization systems and address the gap in WiFi fingerprinting dataset creation. We used the Simultaneous Localization And Mapping (SLAM) algorithm and employed a robotic platform to construct precise maps and localize robots in indoor environments. We developed software applications to facilitate data acquisition, fingerprinting dataset collection, and accurate ground truth map building. Subsequently, we aligned the spatial information generated via the SLAM with the WiFi scans to create a comprehensive WiFi fingerprinting dataset. The created dataset was used to train a deep neural network (DNN) for indoor localization, which can prove the usefulness of grid density. We conducted experimental validation within our office environment to demonstrate the proposed method's effectiveness, including a heatmap from the dataset showcasing the spatial distribution of WiFi signal strengths for the testing access points placed within the environment. Notably, our method offers distinct advantages over existing approaches as it eliminates the need for a predefined map of the environment, requires no preparatory steps, lessens human intervention, creates a denser fingerprinting dataset, and reduces the WiFi fingerprinting dataset creation time. Our method achieves 26% more accurate localization than the other methods and can create a six times denser fingerprinting dataset in one-third of the time compared to the traditional method. In summary, using WiFi RSSI Fingerprinting data surveyed by the SLAM-Enabled Robotic Platform, we can adapt our trained DNN model to indoor localization in any dynamic environment and enhance its scalability and applicability in real-world scenarios.
Abstract:To address the challenges of providing quick and plausible explanations in Explainable AI (XAI) for object detection models, we introduce the Gaussian Class Activation Mapping Explainer (G-CAME). Our method efficiently generates concise saliency maps by utilizing activation maps from selected layers and applying a Gaussian kernel to emphasize critical image regions for the predicted object. Compared with other Region-based approaches, G-CAME significantly reduces explanation time to 0.5 seconds without compromising the quality. Our evaluation of G-CAME, using Faster-RCNN and YOLOX on the MS-COCO 2017 dataset, demonstrates its ability to offer highly plausible and faithful explanations, especially in reducing the bias on tiny object detection.
Abstract:This paper proposes an optimization of an existing Deep Neural Network (DNN) that improves its hardware utilization and facilitates on-device training for resource-constrained edge environments. We implement efficient parameter reduction strategies on Xception that shrink the model size without sacrificing accuracy, thus decreasing memory utilization during training. We evaluate our model in two experiments: Caltech-101 image classification and PCB defect detection and compare its performance against the original Xception and lightweight models, EfficientNetV2B1 and MobileNetV2. The results of the Caltech-101 image classification show that our model has a better test accuracy (76.21%) than Xception (75.89%), uses less memory on average (847.9MB) than Xception (874.6MB), and has faster training and inference times. The lightweight models overfit with EfficientNetV2B1 having a 30.52% test accuracy and MobileNetV2 having a 58.11% test accuracy. Both lightweight models have better memory usage than our model and Xception. On the PCB defect detection, our model has the best test accuracy (90.30%), compared to Xception (88.10%), EfficientNetV2B1 (55.25%), and MobileNetV2 (50.50%). MobileNetV2 has the least average memory usage (849.4MB), followed by our model (865.8MB), then EfficientNetV2B1 (874.8MB), and Xception has the highest (893.6MB). We further experiment with pre-trained weights and observe that memory usage decreases thereby showing the benefits of transfer learning. A Pareto analysis of the models' performance shows that our optimized model architecture satisfies accuracy and low memory utilization objectives.
Abstract:LangXAI is a framework that integrates Explainable Artificial Intelligence (XAI) with advanced vision models to generate textual explanations for visual recognition tasks. Despite XAI advancements, an understanding gap persists for end-users with limited domain knowledge in artificial intelligence and computer vision. LangXAI addresses this by furnishing text-based explanations for classification, object detection, and semantic segmentation model outputs to end-users. Preliminary results demonstrate LangXAI's enhanced plausibility, with high BERTScore across tasks, fostering a more transparent and reliable AI framework on vision tasks for end-users.
Abstract:Quantifying cardiovascular parameters like ejection fraction in zebrafish as a host of biological investigations has been extensively studied. Since current manual monitoring techniques are time-consuming and fallible, several image processing frameworks have been proposed to automate the process. Most of these works rely on supervised deep-learning architectures. However, supervised methods tend to be overfitted on their training dataset. This means that applying the same framework to new data with different imaging setups and mutant types can severely decrease performance. We have developed a Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF) to quantify the cardiac function in zebrafish. In this work, we further applied data augmentation, Transfer Learning (TL), and Test Time Augmentation (TTA) to ZACAF to improve the performance for the quantification of cardiovascular function quantification in zebrafish. This strategy can be integrated with the available frameworks to aid other researchers. We demonstrate that using TL, even with a constrained dataset, the model can be refined to accommodate a novel microscope setup, encompassing diverse mutant types and accommodating various video recording protocols. Additionally, as users engage in successive rounds of TL, the model is anticipated to undergo substantial enhancements in both generalizability and accuracy. Finally, we applied this approach to assess the cardiovascular function in nrap mutant zebrafish, a model of cardiomyopathy.
Abstract:The rising use of Artificial Intelligence (AI) in human detection on Edge camera systems has led to accurate but complex models, challenging to interpret and debug. Our research presents a diagnostic method using Explainable AI (XAI) for model debugging, with expert-driven problem identification and solution creation. Validated on the Bytetrack model in a real-world office Edge network, we found the training dataset as the main bias source and suggested model augmentation as a solution. Our approach helps identify model biases, essential for achieving fair and trustworthy models.
Abstract:Visual quality inspection systems, crucial in sectors like manufacturing and logistics, employ computer vision and machine learning for precise, rapid defect detection. However, their unexplained nature can hinder trust, error identification, and system improvement. This paper presents a framework to bolster visual quality inspection by using CAM-based explanations to refine semantic segmentation models. Our approach consists of 1) Model Training, 2) XAI-based Model Explanation, 3) XAI Evaluation, and 4) Annotation Augmentation for Model Enhancement, informed by explanations and expert insights. Evaluations show XAI-enhanced models surpass original DeepLabv3-ResNet101 models, especially in intricate object segmentation.