Abstract:This research presents an Encoded Spatial Multi-Tier Federated Learning approach for a comprehensive evaluation of aggregated models for geospatial data. In the client tier, encoding spatial information is introduced to better predict the target outcome. The research aims to assess the performance of these models across diverse datasets and spatial attributes, highlighting variations in predictive accuracy. Using evaluation metrics such as accuracy, our research reveals insights into the complexities of spatial granularity and the challenges of capturing underlying patterns in the data. We extended the scope of federated learning (FL) by having multi-tier along with the functionality of encoding spatial attributes. Our N-tier FL approach used encoded spatial data to aggregate in different tiers. We obtained multiple models that predicted the different granularities of spatial data. Our findings underscore the need for further research to improve predictive accuracy and model generalization, with potential avenues including incorporating additional features, refining model architectures, and exploring alternative modeling approaches. Our experiments have several tiers representing different levels of spatial aspects. We obtained accuracy of 75.62% and 89.52% for the global model without having to train the model using the data constituted with the designated tier. The research also highlights the importance of the proposed approach in real-time applications.
Abstract:Indoor localization plays a vital role in the era of the IoT and robotics, with WiFi technology being a prominent choice due to its ubiquity. We present a method for creating WiFi fingerprinting datasets to enhance indoor localization systems and address the gap in WiFi fingerprinting dataset creation. We used the Simultaneous Localization And Mapping (SLAM) algorithm and employed a robotic platform to construct precise maps and localize robots in indoor environments. We developed software applications to facilitate data acquisition, fingerprinting dataset collection, and accurate ground truth map building. Subsequently, we aligned the spatial information generated via the SLAM with the WiFi scans to create a comprehensive WiFi fingerprinting dataset. The created dataset was used to train a deep neural network (DNN) for indoor localization, which can prove the usefulness of grid density. We conducted experimental validation within our office environment to demonstrate the proposed method's effectiveness, including a heatmap from the dataset showcasing the spatial distribution of WiFi signal strengths for the testing access points placed within the environment. Notably, our method offers distinct advantages over existing approaches as it eliminates the need for a predefined map of the environment, requires no preparatory steps, lessens human intervention, creates a denser fingerprinting dataset, and reduces the WiFi fingerprinting dataset creation time. Our method achieves 26% more accurate localization than the other methods and can create a six times denser fingerprinting dataset in one-third of the time compared to the traditional method. In summary, using WiFi RSSI Fingerprinting data surveyed by the SLAM-Enabled Robotic Platform, we can adapt our trained DNN model to indoor localization in any dynamic environment and enhance its scalability and applicability in real-world scenarios.