Abstract:LangXAI is a framework that integrates Explainable Artificial Intelligence (XAI) with advanced vision models to generate textual explanations for visual recognition tasks. Despite XAI advancements, an understanding gap persists for end-users with limited domain knowledge in artificial intelligence and computer vision. LangXAI addresses this by furnishing text-based explanations for classification, object detection, and semantic segmentation model outputs to end-users. Preliminary results demonstrate LangXAI's enhanced plausibility, with high BERTScore across tasks, fostering a more transparent and reliable AI framework on vision tasks for end-users.
Abstract:This paper presents an approach integrating explainable artificial intelligence (XAI) techniques with adaptive learning to enhance energy consumption prediction models, with a focus on handling data distribution shifts. Leveraging SHAP clustering, our method provides interpretable explanations for model predictions and uses these insights to adaptively refine the model, balancing model complexity with predictive performance. We introduce a three-stage process: (1) obtaining SHAP values to explain model predictions, (2) clustering SHAP values to identify distinct patterns and outliers, and (3) refining the model based on the derived SHAP clustering characteristics. Our approach mitigates overfitting and ensures robustness in handling data distribution shifts. We evaluate our method on a comprehensive dataset comprising energy consumption records of buildings, as well as two additional datasets to assess the transferability of our approach to other domains, regression, and classification problems. Our experiments demonstrate the effectiveness of our approach in both task types, resulting in improved predictive performance and interpretable model explanations.
Abstract:Visual quality inspection systems, crucial in sectors like manufacturing and logistics, employ computer vision and machine learning for precise, rapid defect detection. However, their unexplained nature can hinder trust, error identification, and system improvement. This paper presents a framework to bolster visual quality inspection by using CAM-based explanations to refine semantic segmentation models. Our approach consists of 1) Model Training, 2) XAI-based Model Explanation, 3) XAI Evaluation, and 4) Annotation Augmentation for Model Enhancement, informed by explanations and expert insights. Evaluations show XAI-enhanced models surpass original DeepLabv3-ResNet101 models, especially in intricate object segmentation.