Abstract:Data drifts pose a critical challenge in the lifecycle of machine learning (ML) models, affecting their performance and reliability. In response to this challenge, we present a microbenchmark study, called D3Bench, which evaluates the efficacy of open-source drift detection tools. D3Bench examines the capabilities of Evidently AI, NannyML, and Alibi-Detect, leveraging real-world data from two smart building use cases.We prioritize assessing the functional suitability of these tools to identify and analyze data drifts. Furthermore, we consider a comprehensive set of non-functional criteria, such as the integrability with ML pipelines, the adaptability to diverse data types, user-friendliness, computational efficiency, and resource demands. Our findings reveal that Evidently AI stands out for its general data drift detection, whereas NannyML excels at pinpointing the precise timing of shifts and evaluating their consequent effects on predictive accuracy.
Abstract:This paper presents an approach integrating explainable artificial intelligence (XAI) techniques with adaptive learning to enhance energy consumption prediction models, with a focus on handling data distribution shifts. Leveraging SHAP clustering, our method provides interpretable explanations for model predictions and uses these insights to adaptively refine the model, balancing model complexity with predictive performance. We introduce a three-stage process: (1) obtaining SHAP values to explain model predictions, (2) clustering SHAP values to identify distinct patterns and outliers, and (3) refining the model based on the derived SHAP clustering characteristics. Our approach mitigates overfitting and ensures robustness in handling data distribution shifts. We evaluate our method on a comprehensive dataset comprising energy consumption records of buildings, as well as two additional datasets to assess the transferability of our approach to other domains, regression, and classification problems. Our experiments demonstrate the effectiveness of our approach in both task types, resulting in improved predictive performance and interpretable model explanations.