Abstract:Reconstructing dynamic urban scenes presents significant challenges due to their intrinsic geometric structures and spatiotemporal dynamics. Existing methods that attempt to model dynamic urban scenes without leveraging priors on potentially moving regions often produce suboptimal results. Meanwhile, approaches based on manual 3D annotations yield improved reconstruction quality but are impractical due to labor-intensive labeling. In this paper, we revisit the potential of 2D semantic maps for classifying dynamic and static Gaussians and integrating spatial and temporal dimensions for urban scene representation. We introduce Urban4D, a novel framework that employs a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation. Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians. To explicitly model dynamic objects, we propose an intuitive and effective 4D Gaussian splatting (4DGS) representation that aggregates temporal information through learnable time embeddings for each Gaussian, predicting their deformations at desired timestamps using a multilayer perceptron (MLP). For more accurate static reconstruction, we also design a k-nearest neighbor (KNN)-based consistency regularization to handle the ground surface due to its low-texture characteristic. Extensive experiments on real-world datasets demonstrate that Urban4D not only achieves comparable or better quality than previous state-of-the-art methods but also effectively captures dynamic objects while maintaining high visual fidelity for static elements.
Abstract:Most automatic matting methods try to separate the salient foreground from the background. However, the insufficient quantity and subjective bias of the current existing matting datasets make it difficult to fully explore the semantic association between object-to-object and object-to-environment in a given image. In this paper, we propose a Situational Perception Guided Image Matting (SPG-IM) method that mitigates subjective bias of matting annotations and captures sufficient situational perception information for better global saliency distilled from the visual-to-textual task. SPG-IM can better associate inter-objects and object-to-environment saliency, and compensate the subjective nature of image matting and its expensive annotation. We also introduce a textual Semantic Transformation (TST) module that can effectively transform and integrate the semantic feature stream to guide the visual representations. In addition, an Adaptive Focal Transformation (AFT) Refinement Network is proposed to adaptively switch multi-scale receptive fields and focal points to enhance both global and local details. Extensive experiments demonstrate the effectiveness of situational perception guidance from the visual-to-textual tasks on image matting, and our model outperforms the state-of-the-art methods. We also analyze the significance of different components in our model. The code will be released soon.
Abstract:Several video-based 3D pose and shape estimation algorithms have been proposed to resolve the temporal inconsistency of single-image-based methods. However it still remains challenging to have stable and accurate reconstruction. In this paper, we propose a new framework Deep Two-Stream Video Inference for Human Body Pose and Shape Estimation (DTS-VIBE), to generate 3D human pose and mesh from RGB videos. We reformulate the task as a multi-modality problem that fuses RGB and optical flow for more reliable estimation. In order to fully utilize both sensory modalities (RGB or optical flow), we train a two-stream temporal network based on transformer to predict SMPL parameters. The supplementary modality, optical flow, helps to maintain temporal consistency by leveraging motion knowledge between two consecutive frames. The proposed algorithm is extensively evaluated on the Human3.6 and 3DPW datasets. The experimental results show that it outperforms other state-of-the-art methods by a significant margin.
Abstract:Most existing human matting algorithms tried to separate pure human-only foreground from the background. In this paper, we propose a Virtual Multi-modality Foreground Matting (VMFM) method to learn human-object interactive foreground (human and objects interacted with him or her) from a raw RGB image. The VMFM method requires no additional inputs, e.g. trimap or known background. We reformulate foreground matting as a self-supervised multi-modality problem: factor each input image into estimated depth map, segmentation mask, and interaction heatmap using three auto-encoders. In order to fully utilize the characteristics of each modality, we first train a dual encoder-to-decoder network to estimate the same alpha matte. Then we introduce a self-supervised method: Complementary Learning(CL) to predict deviation probability map and exchange reliable gradients across modalities without label. We conducted extensive experiments to analyze the effectiveness of each modality and the significance of different components in complementary learning. We demonstrate that our model outperforms the state-of-the-art methods.