Abstract:This paper is motivated by an interesting phenomenon: the performance of object detection lags behind that of instance segmentation (i.e., performance imbalance) when investigating the intermediate results from the beginning transformer decoder layer of MaskDINO (i.e., the SOTA model for joint detection and segmentation). This phenomenon inspires us to think about a question: will the performance imbalance at the beginning layer of transformer decoder constrain the upper bound of the final performance? With this question in mind, we further conduct qualitative and quantitative pre-experiments, which validate the negative impact of detection-segmentation imbalance issue on the model performance. To address this issue, this paper proposes DI-MaskDINO model, the core idea of which is to improve the final performance by alleviating the detection-segmentation imbalance. DI-MaskDINO is implemented by configuring our proposed De-Imbalance (DI) module and Balance-Aware Tokens Optimization (BATO) module to MaskDINO. DI is responsible for generating balance-aware query, and BATO uses the balance-aware query to guide the optimization of the initial feature tokens. The balance-aware query and optimized feature tokens are respectively taken as the Query and Key&Value of transformer decoder to perform joint object detection and instance segmentation. DI-MaskDINO outperforms existing joint object detection and instance segmentation models on COCO and BDD100K benchmarks, achieving +1.2 $AP^{box}$ and +0.9 $AP^{mask}$ improvements compared to SOTA joint detection and segmentation model MaskDINO. In addition, DI-MaskDINO also obtains +1.0 $AP^{box}$ improvement compared to SOTA object detection model DINO and +3.0 $AP^{mask}$ improvement compared to SOTA segmentation model Mask2Former.
Abstract:This paper proposes a novel semantics-aware autonomous exploration model to handle the long-standing issue: the mainstream RRT (Rapid-exploration Random Tree) based exploration models usually make the mobile robot switch frequently between different regions, leading to the excessively-repeated explorations for the same region. Our proposed semantics-aware model encourages a mobile robot to fully explore the current region before moving to the next region, which is able to avoid excessively-repeated explorations and make the exploration faster. The core idea of semantics-aware autonomous exploration model is optimizing the sampling point selection mechanism and frontier point evaluation function by considering the semantic information of regions. In addition, compared with existing autonomous exploration methods that usually construct the single-type or 2-3 types of maps, our model allows to construct four kinds of maps including point cloud map, occupancy grid map, topological map, and semantic map. To test the performance of our model, we conducted experiments in three simulated environments. The experiment results demonstrate that compared to Improved RRT, our model achieved 33.0% exploration time reduction and 39.3% exploration trajectory length reduction when maintaining >98% exploration rate.
Abstract:Anticipating human intention from videos has broad applications, such as automatic driving, robot assistive technology, and virtual reality. This study addresses the problem of intention action anticipation using egocentric video sequences to estimate actions that indicate human intention. We propose a Hierarchical Complete-Recent (HCR) information fusion model that makes full use of the features of the entire video sequence (i.e., complete features) and the features of the video tail sequence (i.e., recent features). The HCR model has two primary mechanisms. The Guide-Feedback Loop (GFL) mechanism is proposed to model the relation between one recent feature and one complete feature. Based on GFL, the MultiComplete-Recent Feature Aggregation (MCRFA) module is proposed to model the relation of one recent feature with multiscale complete features. Based on GFL and MCRFA, the HCR model can hierarchically explore the rich interrelationships between multiscale complete features and multiscale recent features. Through comparative and ablation experiments, we validate the effectiveness of our model on two well-known public datasets: EPIC-Kitchens and EGTEA Gaze+.
Abstract:To handle the two shortcomings of existing methods, (i)nearly all models rely on high-definition (HD) maps, yet the map information is not always available in real traffic scenes and HD map-building is expensive and time-consuming and (ii) existing models usually focus on improving prediction accuracy at the expense of reducing computing efficiency, yet the efficiency is crucial for various real applications, this paper proposes an efficient trajectory prediction model that is not dependent on traffic maps. The core idea of our model is encoding single-agent's spatial-temporal information in the first stage and exploring multi-agents' spatial-temporal interactions in the second stage. By comprehensively utilizing attention mechanism, LSTM, graph convolution network and temporal transformer in the two stages, our model is able to learn rich dynamic and interaction information of all agents. Our model achieves the highest performance when comparing with existing map-free methods and also exceeds most map-based state-of-the-art methods on the Argoverse dataset. In addition, our model also exhibits a faster inference speed than the baseline methods.
Abstract:The problem of predicting driver attention from the driving perspective is gaining the increasing research focuses due to its remarkable significance for autonomous driving and assisted driving systems. Driving experience is extremely important for driver attention prediction, a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on driving experience and quickly pay attention on the corresponding zones. However, the nonobjective driving experience is difficult to model, so a mechanism simulating driver experience accumulation procedure is absent in existing methods, and the existing methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative long-term temporal information. The incremental knowledge to our model is like the driving experience to humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits solid advantage over existing methods, achieving an average 10.3% performance improvement on three public datasets.
Abstract:Encouraging progress has been made towards Visual Question Answering (VQA) in recent years, but it is still challenging to enable VQA models to adaptively generalize to out-of-distribution (OOD) samples. Intuitively, recompositions of existing visual concepts (i.e., attributes and objects) can generate unseen compositions in the training set, which will promote VQA models to generalize to OOD samples. In this paper, we formulate OOD generalization in VQA as a compositional generalization problem and propose a graph generative modeling-based training scheme (X-GGM) to handle the problem implicitly. X-GGM leverages graph generative modeling to iteratively generate a relation matrix and node representations for the predefined graph that utilizes attribute-object pairs as nodes. Furthermore, to alleviate the unstable training issue in graph generative modeling, we propose a gradient distribution consistency loss to constrain the data distribution with adversarial perturbations and the generated distribution. The baseline VQA model (LXMERT) trained with the X-GGM scheme achieves state-of-the-art OOD performance on two standard VQA OOD benchmarks, i.e., VQA-CP v2 and GQA-OOD. Extensive ablation studies demonstrate the effectiveness of X-GGM components.
Abstract:In autonomous driving, perceiving the driving behaviors of surrounding agents is important for the ego-vehicle to make a reasonable decision. In this paper, we propose a neural network model based on trajectories information for driving behavior recognition. Unlike existing trajectory-based methods that recognize the driving behavior using the hand-crafted features or directly encoding the trajectory, our model involves a Multi-Scale Convolutional Neural Network (MSCNN) module to automatically extract the high-level features which are supposed to encode the rich spatial and temporal information. Given a trajectory sequence of an agent as the input, firstly, the Bi-directional Long Short Term Memory (Bi-LSTM) module and the MSCNN module respectively process the input, generating two features, and then the two features are fused to classify the behavior of the agent. We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
Abstract:The composition recognition of unseen attribute-object is critical to make machines learn to decompose and compose complex concepts like people. Most of the existing methods are limited to the composition recognition of single-attribute-object, and can hardly distinguish the compositions with similar appearances. In this paper, a graph-based model is proposed that can flexibly recognize both single- and multi-attribute-object compositions. The model maps the visual features of images and the attribute-object category labels represented by word embedding vectors into a latent space. Then, according to the constraints of the attribute-object semantic association, distances are calculated between visual features and the corresponding label semantic features in the latent space. During the inference, the composition that is closest to the given image feature among all compositions is used as the reasoning result. In addition, we build a large-scale Multi-Attribute Dataset (MAD) with 116,099 images and 8,030 composition categories. Experiments on MAD and two other single-attribute-object benchmark datasets demonstrate the effectiveness of our approach.
Abstract:The trajectory prediction is significant for the decision-making of autonomous driving vehicles. In this paper, we propose a model to predict the trajectories of target agents around an autonomous vehicle. The main idea of our method is considering the history trajectories of the target agent and the influence of surrounding agents on the target agent. To this end, we encode the target agent history trajectories as an attention mask and construct a social map to encode the interactive relationship between the target agent and its surrounding agents. Given a trajectory sequence, the LSTM networks are firstly utilized to extract the features for all agents, based on which the attention mask and social map are formed. Then, the attention mask and social map are fused to get the fusion feature map, which is processed by the social convolution to obtain a fusion feature representation. Finally, this fusion feature is taken as the input of a variable-length LSTM to predict the trajectory of the target agent. We note that the variable-length LSTM enables our model to handle the case that the number of agents in the sensing scope is highly dynamic in traffic scenes. To verify the effectiveness of our method, we widely compare with several methods on a public dataset, achieving a 20% error decrease. In addition, the model satisfies the real-time requirement with the 32 fps.