Abstract:We introduce Open-Sora Plan, an open-source project that aims to contribute a large generation model for generating desired high-resolution videos with long durations based on various user inputs. Our project comprises multiple components for the entire video generation process, including a Wavelet-Flow Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various condition controllers. Moreover, many assistant strategies for efficient training and inference are designed, and a multi-dimensional data curation pipeline is proposed for obtaining desired high-quality data. Benefiting from efficient thoughts, our Open-Sora Plan achieves impressive video generation results in both qualitative and quantitative evaluations. We hope our careful design and practical experience can inspire the video generation research community. All our codes and model weights are publicly available at \url{https://github.com/PKU-YuanGroup/Open-Sora-Plan}.
Abstract:Small targets are often submerged in cluttered backgrounds of infrared images. Conventional detectors tend to generate false alarms, while CNN-based detectors lose small targets in deep layers. To this end, we propose iSmallNet, a multi-stream densely nested network with label decoupling for infrared small object detection. On the one hand, to fully exploit the shape information of small targets, we decouple the original labeled ground-truth (GT) map into an interior map and a boundary one. The GT map, in collaboration with the two additional maps, tackles the unbalanced distribution of small object boundaries. On the other hand, two key modules are delicately designed and incorporated into the proposed network to boost the overall performance. First, to maintain small targets in deep layers, we develop a multi-scale nested interaction module to explore a wide range of context information. Second, we develop an interior-boundary fusion module to integrate multi-granularity information. Experiments on NUAA-SIRST and NUDT-SIRST clearly show the superiority of iSmallNet over 11 state-of-the-art detectors.