Abstract:Diffusion models have demonstrated their effectiveness across various generative tasks. However, when applied to medical image segmentation, these models encounter several challenges, including significant resource and time requirements. They also necessitate a multi-step reverse process and multiple samples to produce reliable predictions. To address these challenges, we introduce the first latent diffusion segmentation model, named SDSeg, built upon stable diffusion (SD). SDSeg incorporates a straightforward latent estimation strategy to facilitate a single-step reverse process and utilizes latent fusion concatenation to remove the necessity for multiple samples. Extensive experiments indicate that SDSeg surpasses existing state-of-the-art methods on five benchmark datasets featuring diverse imaging modalities. Remarkably, SDSeg is capable of generating stable predictions with a solitary reverse step and sample, epitomizing the model's stability as implied by its name. The code is available at https://github.com/lin-tianyu/Stable-Diffusion-Seg
Abstract:Key\-value separation is used in LSM\-tree to stored large value in separate log files to reduce write amplification, but requires garbage collection to garbage collect invalid values. Existing garbage collection techniques in LSM\-tree typically adopt static parameter based garbage collection to garbage collect obsolete values which struggles to achieve low write amplification and it's challenging to find proper parameter for garbage collection triggering. In this work we introduce DumpKV, which introduces learning based lifetime aware garbage collection with dynamic lifetime adjustment to do efficient garbage collection to achieve lower write amplification. DumpKV manages large values using trained lightweight model with features suitable for various application based on past write access information of keys to give lifetime prediction for each individual key to enable efficient garbage collection. To reduce interference to write throughput DumpKV conducts feature collection during L0\-L1 compaction leveraging the fact that LSM\-tree is small under KV separation. Experimental results show that DumpKV achieves lower write amplification by 38\%\-73\% compared to existing key\-value separation garbage collection LSM\-tree stores with small feature storage overhead.
Abstract:Automatic radiology report generation is booming due to its huge application potential for the healthcare industry. However, existing computer vision and natural language processing approaches to tackle this problem are limited in two aspects. First, when extracting image features, most of them neglect multi-view reasoning in vision and model single-view structure of medical images, such as space-view or channel-view. However, clinicians rely on multi-view imaging information for comprehensive judgment in daily clinical diagnosis. Second, when generating reports, they overlook context reasoning with multi-modal information and focus on pure textual optimization utilizing retrieval-based methods. We aim to address these two issues by proposing a model that better simulates clinicians' perspectives and generates more accurate reports. Given the above limitation in feature extraction, we propose a Globally-intensive Attention (GIA) module in the medical image encoder to simulate and integrate multi-view vision perception. GIA aims to learn three types of vision perception: depth view, space view, and pixel view. On the other hand, to address the above problem in report generation, we explore how to involve multi-modal signals to generate precisely matched reports, i.e., how to integrate previously predicted words with region-aware visual content in next word prediction. Specifically, we design a Visual Knowledge-guided Decoder (VKGD), which can adaptively consider how much the model needs to rely on visual information and previously predicted text to assist next word prediction. Hence, our final Intensive Vision-guided Network (IVGN) framework includes a GIA-guided Visual Encoder and the VKGD. Experiments on two commonly-used datasets IU X-Ray and MIMIC-CXR demonstrate the superior ability of our method compared with other state-of-the-art approaches.
Abstract:Most advances in medical image recognition supporting clinical auxiliary diagnosis meet challenges due to the low-resource situation in the medical field, where annotations are highly expensive and professional. This low-resource problem can be alleviated by leveraging the transferable representations of large-scale pre-trained vision-language models via relevant medical text prompts. However, existing pre-trained vision-language models require domain experts to carefully design the medical prompts, which greatly increases the burden on clinicians. To address this problem, we propose a weakly supervised prompt learning method MedPrompt to automatically generate medical prompts, which includes an unsupervised pre-trained vision-language model and a weakly supervised prompt learning model. The unsupervised pre-trained vision-language model utilizes the natural correlation between medical images and corresponding medical texts for pre-training, without any manual annotations. The weakly supervised prompt learning model only utilizes the classes of images in the dataset to guide the learning of the specific class vector in the prompt, while the learning of other context vectors in the prompt requires no manual annotations for guidance. To the best of our knowledge, this is the first model to automatically generate medical prompts. With these prompts, the pre-trained vision-language model can be freed from the strong expert dependency of manual annotation and manual prompt design. Experimental results show that the model using our automatically generated prompts outperforms its full-shot learning hand-crafted prompts counterparts with only a minimal number of labeled samples for few-shot learning, and reaches superior or comparable accuracy on zero-shot image classification. The proposed prompt generator is lightweight and therefore can be embedded into any network architecture.
Abstract:Given a descriptive text query, text-based person search (TBPS) aims to retrieve the best-matched target person from an image gallery. Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data. To better align the two modalities, most existing works focus on introducing sophisticated network structures and auxiliary tasks, which are complex and hard to implement. In this paper, we propose a simple yet effective dual Transformer model for text-based person search. By exploiting a hardness-aware contrastive learning strategy, our model achieves state-of-the-art performance without any special design for local feature alignment or side information. Moreover, we propose a proximity data generation (PDG) module to automatically produce more diverse data for cross-modal training. The PDG module first introduces an automatic generation algorithm based on a text-to-image diffusion model, which generates new text-image pair samples in the proximity space of original ones. Then it combines approximate text generation and feature-level mixup during training to further strengthen the data diversity. The PDG module can largely guarantee the reasonability of the generated samples that are directly used for training without any human inspection for noise rejection. It improves the performance of our model significantly, providing a feasible solution to the data insufficiency problem faced by such fine-grained visual-linguistic tasks. Extensive experiments on two popular datasets of the TBPS task (i.e., CUHK-PEDES and ICFG-PEDES) show that the proposed approach outperforms state-of-the-art approaches evidently, e.g., improving by 3.88%, 4.02%, 2.92% in terms of Top1, Top5, Top10 on CUHK-PEDES. The codes will be available at https://github.com/HCPLab-SYSU/PersonSearch-CTLG