Abstract:Large Language Models (LLMs) have demonstrated remarkable potential in scientific domains, yet a fundamental question remains unanswered: Can we simulate human research communities with LLMs? Addressing this question can deepen our understanding of the processes behind idea brainstorming and inspire the automatic discovery of novel scientific insights. In this work, we propose ResearchTown, a multi-agent framework for research community simulation. Within this framework, the human research community is simplified and modeled as an agent-data graph, where researchers and papers are represented as agent-type and data-type nodes, respectively, and connected based on their collaboration relationships. We also introduce TextGNN, a text-based inference framework that models various research activities (e.g., paper reading, paper writing, and review writing) as special forms of a unified message-passing process on the agent-data graph. To evaluate the quality of the research simulation, we present ResearchBench, a benchmark that uses a node-masking prediction task for scalable and objective assessment based on similarity. Our experiments reveal three key findings: (1) ResearchTown can provide a realistic simulation of collaborative research activities, including paper writing and review writing; (2) ResearchTown can maintain robust simulation with multiple researchers and diverse papers; (3) ResearchTown can generate interdisciplinary research ideas that potentially inspire novel research directions.
Abstract:Real-world fact verification task aims to verify the factuality of a claim by retrieving evidence from the source document. The quality of the retrieved evidence plays an important role in claim verification. Ideally, the retrieved evidence should be faithful (reflecting the model's decision-making process in claim verification) and plausible (convincing to humans), and can improve the accuracy of verification task. Although existing approaches leverage the similarity measure of semantic or surface form between claims and documents to retrieve evidence, they all rely on certain heuristics that prevent them from satisfying all three requirements. In light of this, we propose a fact verification model named ReRead to retrieve evidence and verify claim that: (1) Train the evidence retriever to obtain interpretable evidence (i.e., faithfulness and plausibility criteria); (2) Train the claim verifier to revisit the evidence retrieved by the optimized evidence retriever to improve the accuracy. The proposed system is able to achieve significant improvements upon best-reported models under different settings.
Abstract:Relation extraction (RE) aims to extract potential relations according to the context of two entities, thus, deriving rational contexts from sentences plays an important role. Previous works either focus on how to leverage the entity information (e.g., entity types, entity verbalization) to inference relations, but ignore context-focused content, or use counterfactual thinking to remove the model's bias of potential relations in entities, but the relation reasoning process will still be hindered by irrelevant content. Therefore, how to preserve relevant content and remove noisy segments from sentences is a crucial task. In addition, retained content needs to be fluent enough to maintain semantic coherence and interpretability. In this work, we propose a novel rationale extraction framework named RE2, which leverages two continuity and sparsity factors to obtain relevant and coherent rationales from sentences. To solve the problem that the gold rationales are not labeled, RE2 applies an optimizable binary mask to each token in the sentence, and adjust the rationales that need to be selected according to the relation label. Experiments on four datasets show that RE2 surpasses baselines.