Abstract:Visual features, whose description often relies on the local intensity and gradient direction, have found wide applications in robot navigation and localization in recent years. However, the extraction of visual features is usually disturbed by the variation of illumination conditions, making it challenging for real-world applications. Previous works have addressed this issue by establishing datasets with variations in illumination conditions, but can be costly and time-consuming. This paper proposes a design procedure for an illumination-robust feature extractor, where the recently developed relightable 3D reconstruction techniques are adopted for rapid and direct data generation with varying illumination conditions. A self-supervised framework is proposed for extracting features with advantages in repeatability for key points and similarity for descriptors across good and bad illumination conditions. Experiments are conducted to demonstrate the effectiveness of the proposed method for robust feature extraction. Ablation studies also indicate the effectiveness of the self-supervised framework design.
Abstract:LiDAR point cloud maps are extensively utilized on roads for robot navigation due to their high consistency. However, dense point clouds face challenges of high memory consumption and reduced maintainability for long-term operations. In this study, we introduce SLIM, a scalable and lightweight mapping system for long-term LiDAR mapping in urban environments. The system begins by parameterizing structural point clouds into lines and planes. These lightweight and structural representations meet the requirements of map merging, pose graph optimization, and bundle adjustment, ensuring incremental management and local consistency. For long-term operations, a map-centric nonlinear factor recovery method is designed to sparsify poses while preserving mapping accuracy. We validate the SLIM system with multi-session real-world LiDAR data from classical LiDAR mapping datasets, including KITTI, NCLT, and HeLiPR. The experiments demonstrate its capabilities in mapping accuracy, lightweightness, and scalability. Map re-use is also verified through map-based robot localization. Ultimately, with multi-session LiDAR data, the SLIM system provides a globally consistent map with low memory consumption (130 KB/km). We have made our code open-source to benefit the community.
Abstract:This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is formulated as a unified Gaussian Ellipsoid Model (GEM) by employing a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we then present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Gradually, we solve multiple maximum cliques (MAC) for each level of the graph, generating numerous transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The performance of the algorithm is extensively validated on three publicly available datasets and a self-collected multi-session dataset, without changing any parameter settings in the experimental evaluation. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other algorithmic frameworks to enhance their efficacy. To advance further research and promote community understanding, we have publicly shared the source code.
Abstract:Global point cloud registration is essential in many robotics tasks like loop closing and relocalization. Unfortunately, the registration often suffers from the low overlap between point clouds, a frequent occurrence in practical applications due to occlusion and viewpoint change. In this paper, we propose a graph-theoretic framework to address the problem of global point cloud registration with low overlap. To this end, we construct a consistency graph to facilitate robust data association and employ graduated non-convexity (GNC) for reliable pose estimation, following the state-of-the-art (SoTA) methods. Unlike previous approaches, we use semantic cues to scale down the dense point clouds, thus reducing the problem size. Moreover, we address the ambiguity arising from the consistency threshold by constructing a pyramid graph with multi-level consistency thresholds. Then we propose a cascaded gradient ascend method to solve the resulting densest clique problem and obtain multiple pose candidates for every consistency threshold. Finally, fast geometric verification is employed to select the optimal estimation from multiple pose candidates. Our experiments, conducted on a self-collected indoor dataset and the public KITTI dataset, demonstrate that our method achieves the highest success rate despite the low overlap of point clouds and low semantic quality. We have open-sourced our code https://github.com/HKUST-Aerial-Robotics/Pagor for this project.
Abstract:In this study, we introduce an online monocular lane mapping approach that solely relies on a single camera and odometry for generating spline-based maps. Our proposed technique models the lane association process as an assignment issue utilizing a bipartite graph, and assigns weights to the edges by incorporating Chamfer distance, pose uncertainty, and lateral sequence consistency. Furthermore, we meticulously design control point initialization, spline parameterization, and optimization to progressively create, expand, and refine splines. In contrast to prior research that assessed performance using self-constructed datasets, our experiments are conducted on the openly accessible OpenLane dataset. The experimental outcomes reveal that our suggested approach enhances lane association and odometry precision, as well as overall lane map quality. We have open-sourced our code1 for this project.
Abstract:In this paper, we present a centralized framework for multi-session LiDAR mapping in urban environments, by utilizing lightweight line and plane map representations instead of widely used point clouds. The proposed framework achieves consistent mapping in a coarse-to-fine manner. Global place recognition is achieved by associating lines and planes on the Grassmannian manifold, followed by an outlier rejection-aided pose graph optimization for map merging. Then a novel bundle adjustment is also designed to improve the local consistency of lines and planes. In the experimental section, both public and self-collected datasets are used to demonstrate efficiency and effectiveness. Extensive results validate that our LiDAR mapping framework could merge multi-session maps globally, optimize maps incrementally, and is applicable for lightweight robot localization.
Abstract:Constructing a high-quality dense map in real-time is essential for robotics, AR/VR, and digital twins applications. As Neural Radiance Field (NeRF) greatly improves the mapping performance, in this paper, we propose a NeRF-based mapping method that enables higher-quality reconstruction and real-time capability even on edge computers. Specifically, we propose a novel hierarchical hybrid representation that leverages implicit multiresolution hash encoding aided by explicit octree SDF priors, describing the scene at different levels of detail. This representation allows for fast scene geometry initialization and makes scene geometry easier to learn. Besides, we present a coverage-maximizing keyframe selection strategy to address the forgetting issue and enhance mapping quality, particularly in marginal areas. To the best of our knowledge, our method is the first to achieve high-quality NeRF-based mapping on edge computers of handheld devices and quadrotors in real-time. Experiments demonstrate that our method outperforms existing NeRF-based mapping methods in geometry accuracy, texture realism, and time consumption. The code will be released at: https://github.com/SYSU-STAR/H2-Mapping