Abstract:Considering the challenges faced by large language models (LLMs) on logical reasoning, prior efforts have sought to transform problem-solving through tool learning. While progress has been made on small-scale problems, solving industrial cases remains difficult due to their large scale and intricate expressions. In this paper, we propose a novel solver-layer adaptation (SoLA) method, where we introduce a solver as a new layer of the LLM to differentially guide solutions towards satisfiability. In SoLA, LLM aims to comprehend the search space described in natural language and identify local solutions of the highest quality, while the solver layer focuses solely on constraints not satisfied by the initial solution. Leveraging MaxSAT as a bridge, we define forward and backward transfer gradients, enabling the final model to converge to a satisfied solution or prove unsatisfiability. The backdoor theory ensures that SoLA can obtain accurate solutions within polynomial loops. We evaluate the performance of SoLA on various datasets and empirically demonstrate its consistent outperformance against existing symbolic solvers (including Z3 and Kissat) and tool-learning methods in terms of efficiency in large-scale problem-solving.
Abstract:Due to the growing complexity of modern Integrated Circuits (ICs), there is a need for automated circuit design methods. Recent years have seen rising research in hardware design language generation to facilitate the design process. In this work, we propose a Verilog generation framework, BetterV, which fine-tunes the large language models (LLMs) on processed domain-specific datasets and incorporates generative discriminators for guidance on particular design demands. The Verilog modules are collected, filtered and processed from internet to form a clean and abundant dataset. Instruct-tuning methods are specially designed to fine-tuned the LLMs to understand the knowledge about Verilog. Furthermore, data are augmented to enrich the training set and also used to train a generative discriminator on particular downstream task, which leads a guidance for the LLMs to optimize the Verilog implementation. BetterV has the ability to generate syntactically and functionally correct Verilog, which can outperform GPT-4 on the VerilogEval-machine benchmark. With the help of task-specific generative discriminator, BetterV can achieve remarkable improvement on various electronic design automation (EDA) downstream tasks, including the netlist node reduction for synthesis and verification runtime reduction with Boolean Satisfiability (SAT) solving.
Abstract:Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability. In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information. By optimizing complex-valued neural fields to perform optical kernel regression from coordinates, our method can accurately restore lithography system using a small-scale training dataset with fewer parameters, demonstrating superior generalization capability as well. Experiments show that our framework can use 31% of parameters while achieving 69$\times$ smaller mean squared error with 1.3$\times$ higher throughput than the state-of-the-art.
Abstract:Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their targets, such as reconstruction efficiency, reconstruction accuracy, and perceptual accuracy. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field. An investigation project for SISR is provided in https://github.com/CV-JunchengLi/SISR-Survey.