Abstract:Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability. In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information. By optimizing complex-valued neural fields to perform optical kernel regression from coordinates, our method can accurately restore lithography system using a small-scale training dataset with fewer parameters, demonstrating superior generalization capability as well. Experiments show that our framework can use 31% of parameters while achieving 69$\times$ smaller mean squared error with 1.3$\times$ higher throughput than the state-of-the-art.
Abstract:Recent years have witnessed impressive progress in super-resolution (SR) processing. However, its real-time inference requirement sets a challenge not only for the model design but also for the on-chip implementation. In this paper, we implement a full-stack SR acceleration framework on embedded GPU devices. The special dictionary learning algorithm used in SR models was analyzed in detail and accelerated via a novel dictionary selective strategy. Besides, the hardware programming architecture together with the model structure is analyzed to guide the optimal design of computation kernels to minimize the inference latency under the resource constraints. With these novel techniques, the communication and computation bottlenecks in the deep dictionary learning-based SR models are tackled perfectly. The experiments on the edge embedded NVIDIA NX and 2080Ti show that our method outperforms the state-of-the-art NVIDIA TensorRT significantly, and can achieve real-time performance.
Abstract:Optical proximity correction (OPC) is a widely-used resolution enhancement technique (RET) for printability optimization. Recently, rigorous numerical optimization and fast machine learning are the research focus of OPC in both academia and industry, each of which complements the other in terms of robustness or efficiency. We inspect the pattern distribution on a design layer and find that different sub-regions have different pattern complexity. Besides, we also find that many patterns repetitively appear in the design layout, and these patterns may possibly share optimized masks. We exploit these properties and propose a self-adaptive OPC framework to improve efficiency. Firstly we choose different OPC solvers adaptively for patterns of different complexity from an extensible solver pool to reach a speed/accuracy co-optimization. Apart from that, we prove the feasibility of reusing optimized masks for repeated patterns and hence, build a graph-based dynamic pattern library reusing stored masks to further speed up the OPC flow. Experimental results show that our framework achieves substantial improvement in both performance and efficiency.