Abstract:Push-Relabel is one of the most celebrated network flow algorithms. Maintaining a pre-flow that saturates a cut, it enjoys better theoretical and empirical running time than other flow algorithms, such as Ford-Fulkerson. In practice, Push-Relabel is even faster than what theoretical guarantees can promise, in part because of the use of good heuristics for seeding and updating the iterative algorithm. However, it remains unclear how to run Push-Relabel on an arbitrary initialization that is not necessarily a pre-flow or cut-saturating. We provide the first theoretical guarantees for warm-starting Push-Relabel with a predicted flow, where our learning-augmented version benefits from fast running time when the predicted flow is close to an optimal flow, while maintaining robust worst-case guarantees. Interestingly, our algorithm uses the gap relabeling heuristic, which has long been employed in practice, even though prior to our work there was no rigorous theoretical justification for why it can lead to run-time improvements. We then provide experiments that show our warm-started Push-Relabel also works well in practice.
Abstract:It has become increasingly clear that recommender systems overly focusing on short-term engagement can inadvertently hurt long-term user experience. However, it is challenging to optimize long-term user experience directly as the desired signal is sparse, noisy and manifests over a long horizon. In this work, we show the benefits of incorporating higher-level user understanding, specifically user intents that can persist across multiple interactions or recommendation sessions, for whole-page recommendation toward optimizing long-term user experience. User intent has primarily been investigated within the context of search, but remains largely under-explored for recommender systems. To bridge this gap, we develop a probabilistic intent-based whole-page diversification framework in the final stage of a recommender system. Starting with a prior belief of user intents, the proposed diversification framework sequentially selects items at each position based on these beliefs, and subsequently updates posterior beliefs about the intents. It ensures that different user intents are represented in a page towards optimizing long-term user experience. We experiment with the intent diversification framework on one of the world's largest content recommendation platforms, serving billions of users daily. Our framework incorporates the user's exploration intent, capturing their propensity to explore new interests and content. Live experiments show that the proposed framework leads to an increase in user retention and overall user enjoyment, validating its effectiveness in facilitating long-term planning. In particular, it enables users to consistently discover and engage with diverse contents that align with their underlying intents over time, thereby leading to an improved long-term user experience.
Abstract:Differential privacy is often studied under two different models of neighboring datasets: the add-remove model and the swap model. While the swap model is used extensively in the academic literature, many practical libraries use the more conservative add-remove model. However, analysis under the add-remove model can be cumbersome, and obtaining results with tight constants requires some additional work. Here, we study the problem of one-dimensional mean estimation under the add-remove model of differential privacy. We propose a new algorithm and show that it is min-max optimal, that it has the correct constant in the leading term of the mean squared error, and that this constant is the same as the optimal algorithm in the swap model. Our results show that, for mean estimation, the add-remove and swap model give nearly identical error even though the add-remove model cannot treat the size of the dataset as public information. In addition, we demonstrate empirically that our proposed algorithm yields a factor of two improvement in mean squared error over algorithms often used in practice.
Abstract:Recommending novel content, which expands user horizons by introducing them to new interests, has been shown to improve users' long-term experience on recommendation platforms \cite{chen2021values}. Users however are not constantly looking to explore novel content. It is therefore crucial to understand their novelty-seeking intent and adjust the recommendation policy accordingly. Most existing literature models a user's propensity to choose novel content or to prefer a more diverse set of recommendations at individual interactions. Hierarchical structure, on the other hand, exists in a user's novelty-seeking intent, which is manifested as a static and intrinsic user preference for seeking novelty along with a dynamic session-based propensity. To this end, we propose a novel hierarchical reinforcement learning-based method to model the hierarchical user novelty-seeking intent, and to adapt the recommendation policy accordingly based on the extracted user novelty-seeking propensity. We further incorporate diversity and novelty-related measurement in the reward function of the hierarchical RL (HRL) agent to encourage user exploration \cite{chen2021values}. We demonstrate the benefits of explicitly modeling hierarchical user novelty-seeking intent in recommendations through extensive experiments on simulated and real-world datasets. In particular, we demonstrate that the effectiveness of our proposed hierarchical RL-based method lies in its ability to capture such hierarchically-structured intent. As a result, the proposed HRL model achieves superior performance on several public datasets, compared with state-of-art baselines.
Abstract:Existing aspect extraction methods mostly rely on explicit or ground truth aspect information, or using data mining or machine learning approaches to extract aspects from implicit user feedback such as user reviews. It however remains under-explored how the extracted aspects can help generate more meaningful recommendations to the users. Meanwhile, existing research on aspect-based recommendations often relies on separate aspect extraction models or assumes the aspects are given, without accounting for the fact the optimal set of aspects could be dependent on the recommendation task at hand. In this work, we propose to combine aspect extraction together with aspect-based recommendations in an end-to-end manner, achieving the two goals together in a single framework. For the aspect extraction component, we leverage the recent advances in large language models and design a new prompt learning mechanism to generate aspects for the end recommendation task. For the aspect-based recommendation component, the extracted aspects are concatenated with the usual user and item features used by the recommendation model. The recommendation task mediates the learning of the user embeddings and item embeddings, which are used as soft prompts to generate aspects. Therefore, the extracted aspects are personalized and contextualized by the recommendation task. We showcase the effectiveness of our proposed method through extensive experiments on three industrial datasets, where our proposed framework significantly outperforms state-of-the-art baselines in both the personalized aspect extraction and aspect-based recommendation tasks. In particular, we demonstrate that it is necessary and beneficial to combine the learning of aspect extraction and aspect-based recommendation together. We also conduct extensive ablation studies to understand the contribution of each design component in our framework.
Abstract:Darknet markets provide a large platform for trading illicit goods and services due to their anonymity. Learning an invariant representation of each user based on their posts on different markets makes it easy to aggregate user information across different platforms, which helps identify anonymous users. Traditional user representation methods mainly rely on modeling the text information of posts and cannot capture the temporal content and the forum interaction of posts. While recent works mainly use CNN to model the text information of posts, failing to effectively model posts whose length changes frequently in an episode. To address the above problems, we propose a model named URM4DMU(User Representation Model for Darknet Markets Users) which mainly improves the post representation by augmenting convolutional operators and self-attention with an adaptive gate mechanism. It performs much better when combined with the temporal content and the forum interaction of posts. We demonstrate the effectiveness of URM4DMU on four darknet markets. The average improvements on MRR value and Recall@10 are 22.5% and 25.5% over the state-of-the-art method respectively.
Abstract:Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.
Abstract:Users who come to recommendation platforms are heterogeneous in activity levels. There usually exists a group of core users who visit the platform regularly and consume a large body of content upon each visit, while others are casual users who tend to visit the platform occasionally and consume less each time. As a result, consumption activities from core users often dominate the training data used for learning. As core users can exhibit different activity patterns from casual users, recommender systems trained on historical user activity data usually achieve much worse performance on casual users than core users. To bridge the gap, we propose a model-agnostic framework L2Aug to improve recommendations for casual users through data augmentation, without sacrificing core user experience. L2Aug is powered by a data augmentor that learns to generate augmented interaction sequences, in order to fine-tune and optimize the performance of the recommendation system for casual users. On four real-world public datasets, L2Aug outperforms other treatment methods and achieves the best sequential recommendation performance for both casual and core users. We also test L2Aug in an online simulation environment with real-time feedback to further validate its efficacy, and showcase its flexibility in supporting different augmentation actions.
Abstract:As multi-task models gain popularity in a wider range of machine learning applications, it is becoming increasingly important for practitioners to understand the fairness implications associated with those models. Most existing fairness literature focuses on learning a single task more fairly, while how ML fairness interacts with multiple tasks in the joint learning setting is largely under-explored. In this paper, we are concerned with how group fairness (e.g., equal opportunity, equalized odds) as an ML fairness concept plays out in the multi-task scenario. In multi-task learning, several tasks are learned jointly to exploit task correlations for a more efficient inductive transfer. This presents a multi-dimensional Pareto frontier on (1) the trade-off between group fairness and accuracy with respect to each task, as well as (2) the trade-offs across multiple tasks. We aim to provide a deeper understanding on how group fairness interacts with accuracy in multi-task learning, and we show that traditional approaches that mainly focus on optimizing the Pareto frontier of multi-task accuracy might not perform well on fairness goals. We propose a new set of metrics to better capture the multi-dimensional Pareto frontier of fairness-accuracy trade-offs uniquely presented in a multi-task learning setting. We further propose a Multi-Task-Aware Fairness (MTA-F) approach to improve fairness in multi-task learning. Experiments on several real-world datasets demonstrate the effectiveness of our proposed approach.
Abstract:This paper explores hierarchical clustering in the case where pairs of points have dissimilarity scores (e.g. distances) as a part of the input. The recently introduced objective for points with dissimilarity scores results in every tree being a 1/2 approximation if the distances form a metric. This shows the objective does not make a significant distinction between a good and poor hierarchical clustering in metric spaces. Motivated by this, the paper develops a new global objective for hierarchical clustering in Euclidean space. The objective captures the criterion that has motivated the use of divisive clustering algorithms: that when a split happens, points in the same cluster should be more similar than points in different clusters. Moreover, this objective gives reasonable results on ground-truth inputs for hierarchical clustering. The paper builds a theoretical connection between this objective and the bisecting k-means algorithm. This paper proves that the optimal 2-means solution results in a constant approximation for the objective. This is the first paper to show the bisecting k-means algorithm optimizes a natural global objective over the entire tree.