Abstract:It has become increasingly clear that recommender systems overly focusing on short-term engagement can inadvertently hurt long-term user experience. However, it is challenging to optimize long-term user experience directly as the desired signal is sparse, noisy and manifests over a long horizon. In this work, we show the benefits of incorporating higher-level user understanding, specifically user intents that can persist across multiple interactions or recommendation sessions, for whole-page recommendation toward optimizing long-term user experience. User intent has primarily been investigated within the context of search, but remains largely under-explored for recommender systems. To bridge this gap, we develop a probabilistic intent-based whole-page diversification framework in the final stage of a recommender system. Starting with a prior belief of user intents, the proposed diversification framework sequentially selects items at each position based on these beliefs, and subsequently updates posterior beliefs about the intents. It ensures that different user intents are represented in a page towards optimizing long-term user experience. We experiment with the intent diversification framework on one of the world's largest content recommendation platforms, serving billions of users daily. Our framework incorporates the user's exploration intent, capturing their propensity to explore new interests and content. Live experiments show that the proposed framework leads to an increase in user retention and overall user enjoyment, validating its effectiveness in facilitating long-term planning. In particular, it enables users to consistently discover and engage with diverse contents that align with their underlying intents over time, thereby leading to an improved long-term user experience.
Abstract:Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation. Their potential for deeper user understanding and improved personalized user experience on recommendation platforms is, however, largely untapped. This paper aims to address this gap. Recommender systems today capture users' interests through encoding their historical activities on the platforms. The generated user representations are hard to examine or interpret. On the other hand, if we were to ask people about interests they pursue in their life, they might talk about their hobbies, like I just started learning the ukulele, or their relaxation routines, e.g., I like to watch Saturday Night Live, or I want to plant a vertical garden. We argue, and demonstrate through extensive experiments, that LLMs as foundation models can reason through user activities, and describe their interests in nuanced and interesting ways, similar to how a human would. We define interest journeys as the persistent and overarching user interests, in other words, the non-transient ones. These are the interests that we believe will benefit most from the nuanced and personalized descriptions. We introduce a framework in which we first perform personalized extraction of interest journeys, and then summarize the extracted journeys via LLMs, using techniques like few-shot prompting, prompt-tuning and fine-tuning. Together, our results in prompting LLMs to name extracted user journeys in a large-scale industrial platform demonstrate great potential of these models in providing deeper, more interpretable, and controllable user understanding. We believe LLM powered user understanding can be a stepping stone to entirely new user experiences on recommendation platforms that are journey-aware, assistive, and enabling frictionless conversation down the line.