Abstract:Gender bias in vision-language models (VLMs) can reinforce harmful stereotypes and discrimination. In this paper, we focus on mitigating gender bias towards vision-language tasks. We identify object hallucination as the essence of gender bias in VLMs. Existing VLMs tend to focus on salient or familiar attributes in images but ignore contextualized nuances. Moreover, most VLMs rely on the co-occurrence between specific objects and gender attributes to infer the ignored features, ultimately resulting in gender bias. We propose GAMA, a task-agnostic generation framework to mitigate gender bias. GAMA consists of two stages: narrative generation and answer inference. During narrative generation, GAMA yields all-sided but gender-obfuscated narratives, which prevents premature concentration on localized image features, especially gender attributes. During answer inference, GAMA integrates the image, generated narrative, and a task-specific question prompt to infer answers for different vision-language tasks. This approach allows the model to rethink gender attributes and answers. We conduct extensive experiments on GAMA, demonstrating its debiasing and generalization ability.
Abstract:Zero-shot relation triplet extraction (ZeroRTE) aims to extract relation triplets from unstructured texts under the zero-shot setting, where the relation sets at the training and testing stages are disjoint. Previous state-of-the-art method handles this challenging task by leveraging pretrained language models to generate data as additional training samples, which increases the training cost and severely constrains the model performance. To address the above issues, we propose a novel method named PCRED for ZeroRTE with Potential Candidate Relation Selection and Entity Boundary Detection. The remarkable characteristic of PCRED is that it does not rely on additional data and still achieves promising performance. The model adopts a relation-first paradigm, recognizing unseen relations through candidate relation selection. With this approach, the semantics of relations are naturally infused in the context. Entities are extracted based on the context and the semantics of relations subsequently. We evaluate our model on two ZeroRTE datasets. The experiment results show that our method consistently outperforms previous works. Our code will be available at https://anonymous.4open.science/r/PCRED.
Abstract:Blockchains have become the catalyst for a growing movement to create a more decentralized Internet. A fundamental operation of applications in a decentralized Internet is data storage and retrieval. As today's blockchains are limited in their storage functionalities, in recent years a number of peer-to-peer data storage networks have emerged based on the Kademlia distributed hash table protocol. However, existing Kademlia implementations are not efficient enough to support fast data storage and retrieval operations necessary for (decentralized) Web applications. In this paper, we present Kadabra, a decentralized protocol for computing the routing table entries in Kademlia to accelerate lookups. Kadabra is motivated by the multi-armed bandit problem, and can automatically adapt to heterogeneity and dynamism in the network. Experimental results show Kadabra achieving between 15-50% lower lookup latencies compared to state-of-the-art baselines.
Abstract:In this paper, we consider covert beamforming design for intelligent reflecting surface (IRS) assisted Internet of Things (IoT) networks, where Alice utilizes IRS to covertly transmit a message to Bob without being recognized by Willie. We investigate the joint beamformer design of Alice and IRS to maximize the covert rate of Bob when the knowledge about Willie's channel state information (WCSI) is perfect and imperfect at Alice, respectively. For the former case, we develop a covert beamformer under the perfect covert constraint by applying semidefinite relaxation. For the later case, the optimal decision threshold of Willie is derived, and we analyze the false alarm and the missed detection probabilities. Furthermore, we utilize the property of Kullback-Leibler divergence to develop the robust beamformer based on a relaxation, S-Lemma and alternate iteration approach. Finally, the numerical experiments evaluate the performance of the proposed covert beamformer design and robust beamformer design.