Abstract:Story visualization, the task of generating coherent images based on a narrative, has seen significant advancements with the emergence of text-to-image models, particularly diffusion models. However, maintaining semantic consistency, generating high-quality fine-grained interactions, and ensuring computational feasibility remain challenging, especially in long story visualization (i.e., up to 100 frames). In this work, we propose a training-free and computationally efficient framework, termed Story-Adapter, to enhance the generative capability of long stories. Specifically, we propose an iterative paradigm to refine each generated image, leveraging both the text prompt and all generated images from the previous iteration. Central to our framework is a training-free global reference cross-attention module, which aggregates all generated images from the previous iteration to preserve semantic consistency across the entire story, while minimizing computational costs with global embeddings. This iterative process progressively optimizes image generation by repeatedly incorporating text constraints, resulting in more precise and fine-grained interactions. Extensive experiments validate the superiority of Story-Adapter in improving both semantic consistency and generative capability for fine-grained interactions, particularly in long story scenarios. The project page and associated code can be accessed via https://jwmao1.github.io/storyadapter .
Abstract:In this paper, we introduce a hierarchical transformer-based model designed for sophisticated image segmentation tasks, effectively bridging the granularity of part segmentation with the comprehensive scope of object segmentation. At the heart of our approach is a multi-level representation strategy, which systematically advances from individual pixels to superpixels, and ultimately to cohesive group formations. This architecture is underpinned by two pivotal aggregation strategies: local aggregation and global aggregation. Local aggregation is employed to form superpixels, leveraging the inherent redundancy of the image data to produce segments closely aligned with specific parts of the object, guided by object-level supervision. In contrast, global aggregation interlinks these superpixels, organizing them into larger groups that correlate with entire objects and benefit from part-level supervision. This dual aggregation framework ensures a versatile adaptation to varying supervision inputs while maintaining computational efficiency. Our methodology notably improves the balance between adaptability across different supervision modalities and computational manageability, culminating in significant enhancement in segmentation performance. When tested on the PartImageNet dataset, our model achieves a substantial increase, outperforming the previous state-of-the-art by 2.8% and 0.8% in mIoU scores for part and object segmentation, respectively. Similarly, on the Pascal Part dataset, it records performance enhancements of 1.5% and 2.0% for part and object segmentation, respectively.
Abstract:This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases. These enriched annotations encompass both global textual information, such as disease/lesion type, modality, region-specific descriptions, and inter-regional relationships, as well as detailed local annotations for regions of interest (ROIs), including bounding boxes, segmentation masks. Unlike existing approach which is limited by the availability of image-text pairs, we have developed the first automated pipeline that scales up multimodal data by generating multigranular visual and texual annotations (in the form of image-ROI-description triplets) without the need for any paired text descriptions. Specifically, data from over 90 different sources have been collected, preprocessed, and grounded using domain-specific expert models to identify ROIs related to abnormal regions. We then build a comprehensive knowledge base and prompt multimodal large language models to perform retrieval-augmented generation with the identified ROIs as guidance, resulting in multigranular texual descriptions. Compared to existing datasets, MedTrinity-25M provides the most enriched annotations, supporting a comprehensive range of multimodal tasks such as captioning and report generation, as well as vision-centric tasks like classification and segmentation. Pretraining on MedTrinity-25M, our model achieves state-of-the-art performance on VQA-RAD and PathVQA, surpassing both multimodal large language models and other representative SoTA approaches. This dataset can also be utilized to support large-scale pre-training of multimodal medical AI models, contributing to the development of future foundation models in the medical domain.