Abstract:Modern automatic speech recognition (ASR) model is required to accurately transcribe diverse speech signals (from different domains, languages, accents, etc) given the specific contextual information in various application scenarios. Classic end-to-end models fused with extra language models perform well, but mainly in data matching scenarios and are gradually approaching a bottleneck. In this work, we introduce Seed-ASR, a large language model (LLM) based speech recognition model. Seed-ASR is developed based on the framework of audio conditioned LLM (AcLLM), leveraging the capabilities of LLMs by inputting continuous speech representations together with contextual information into the LLM. Through stage-wise large-scale training and the elicitation of context-aware capabilities in LLM, Seed-ASR demonstrates significant improvement over end-to-end models on comprehensive evaluation sets, including multiple domains, accents/dialects and languages. Additionally, Seed-ASR can be further deployed to support specific needs in various scenarios without requiring extra language models. Compared to recently released large ASR models, Seed-ASR achieves 10%-40% reduction in word (or character, for Chinese) error rates on Chinese and English public test sets, further demonstrating its powerful performance.
Abstract:Attention-based encoder-decoder model has achieved impressive results for both automatic speech recognition (ASR) and text-to-speech (TTS) tasks. This approach takes advantage of the memorization capacity of neural networks to learn the mapping from the input sequence to the output sequence from scratch, without the assumption of prior knowledge such as the alignments. However, this model is prone to overfitting, especially when the amount of training data is limited. Inspired by SpecAugment and BERT, in this paper, we propose a semantic mask based regularization for training such kind of end-to-end (E2E) model. The idea is to mask the input features corresponding to a particular output token, e.g., a word or a word-piece, in order to encourage the model to fill the token based on the contextual information. While this approach is applicable to the encoder-decoder framework with any type of neural network architecture, we study the transformer-based model for ASR in this work. We perform experiments on Librispeech 960h and TedLium2 data sets, and achieve the state-of-the-art performance on the test set in the scope of E2E models.