Abstract:Recently, neural implicit 3D reconstruction in indoor scenarios has become popular due to its simplicity and impressive performance. Previous works could produce complete results leveraging monocular priors of normal or depth. However, they may suffer from over-smoothed reconstructions and long-time optimization due to unbiased sampling and inaccurate monocular priors. In this paper, we propose a novel neural implicit surface reconstruction method, named FD-NeuS, to learn fine-detailed 3D models using multi-level importance sampling strategy and multi-view consistency methodology. Specifically, we leverage segmentation priors to guide region-based ray sampling, and use piecewise exponential functions as weights to pilot 3D points sampling along the rays, ensuring more attention on important regions. In addition, we introduce multi-view feature consistency and multi-view normal consistency as supervision and uncertainty respectively, which further improve the reconstruction of details. Extensive quantitative and qualitative results show that FD-NeuS outperforms existing methods in various scenes.
Abstract:As productivity advances, the demand of customers for multi-variety and small-batch production is increasing, thereby putting forward higher requirements for manufacturing systems. When production tasks frequent changes due to this demand, traditional manufacturing systems often cannot response promptly. The multi-agent manufacturing system is proposed to address this problem. However, because of technical limitations, the negotiation among agents in this kind of system is realized through predefined heuristic rules, which is not intelligent enough to deal with the multi-variety and small batch production. To this end, a Large Language Model-based (LLM-based) multi-agent manufacturing system for intelligent shopfloor is proposed in the present study. This system delineates the diverse agents and defines their collaborative methods. The roles of the agents encompass Machine Server Agent (MSA), Bid Inviter Agent (BIA), Bidder Agent (BA), Thinking Agent (TA), and Decision Agent (DA). Due to the support of LLMs, TA and DA acquire the ability of analyzing the shopfloor condition and choosing the most suitable machine, as opposed to executing a predefined program artificially. The negotiation between BAs and BIA is the most crucial step in connecting manufacturing resources. With the support of TA and DA, BIA will finalize the distribution of orders, relying on the information of each machine returned by BA. MSAs bears the responsibility for connecting the agents with the physical shopfloor. This system aims to distribute and transmit workpieces through the collaboration of the agents with these distinct roles, distinguishing it from other scheduling approaches. Comparative experiments were also conducted to validate the performance of this system.
Abstract:We present SpaceAgents-1, a system for learning human and multi-robot collaboration (HMRC) strategies under microgravity conditions. Future space exploration requires humans to work together with robots. However, acquiring proficient robot skills and adept collaboration under microgravity conditions poses significant challenges within ground laboratories. To address this issue, we develop a microgravity simulation environment and present three typical configurations of intra-cabin robots. We propose a hierarchical heterogeneous multi-agent collaboration architecture: guided by foundation models, a Decision-Making Agent serves as a task planner for human-robot collaboration, while individual Skill-Expert Agents manage the embodied control of robots. This mechanism empowers the SpaceAgents-1 system to execute a range of intricate long-horizon HMRC tasks.