Abstract:The creation of increasingly vivid 3D virtual digital humans has become a hot topic in recent years. Currently, most speech-driven work focuses on training models to learn the relationship between phonemes and visemes to achieve more realistic lips. However, they fail to capture the correlations between emotions and facial expressions effectively. To solve this problem, we propose a new model, termed EmoFace. EmoFace employs a novel Mesh Attention mechanism, which helps to learn potential feature dependencies between mesh vertices in time and space. We also adopt, for the first time to our knowledge, an effective self-growing training scheme that combines teacher-forcing and scheduled sampling in a 3D face animation task. Additionally, since EmoFace is an autoregressive model, there is no requirement that the first frame of the training data must be a silent frame, which greatly reduces the data limitations and contributes to solve the current dilemma of insufficient datasets. Comprehensive quantitative and qualitative evaluations on our proposed high-quality reconstructed 3D emotional facial animation dataset, 3D-RAVDESS ($5.0343\times 10^{-5}$mm for LVE and $1.0196\times 10^{-5}$mm for EVE), and publicly available dataset VOCASET ($2.8669\times 10^{-5}$mm for LVE and $0.4664\times 10^{-5}$mm for EVE), demonstrate that our algorithm achieves state-of-the-art performance.
Abstract:3D speech-driven facial animation generation has received much attention in both industrial applications and academic research. Since the non-verbal facial cues that exist across the face in reality are non-deterministic, the generated results should be diverse. However, most recent methods are deterministic models that cannot learn a many-to-many mapping between audio and facial motion to generate diverse facial animations. To address this problem, we propose GLDiTalker, which introduces a motion prior along with some stochasticity to reduce the uncertainty of cross-modal mapping while increasing non-determinacy of the non-verbal facial cues that reside throughout the face. Particularly, GLDiTalker uses VQ-VAE to map facial motion mesh sequences into latent space in the first stage, and then iteratively adds and removes noise to the latent facial motion features in the second stage. In order to integrate different levels of spatial information, the Spatial Pyramidal SpiralConv Encoder is also designed to extract multi-scale features. Extensive qualitative and quantitative experiments demonstrate that our method achieves the state-of-the-art performance.
Abstract:Recent advancements in both transformer-based methods and spiral neighbor sampling techniques have greatly enhanced hand mesh reconstruction. Transformers excel in capturing complex vertex relationships, and spiral neighbor sampling is vital for utilizing topological structures. This paper ingeniously integrates spiral sampling into the Transformer architecture, enhancing its ability to leverage mesh topology for superior performance in hand mesh reconstruction, resulting in substantial accuracy boosts. STMR employs a single image encoder for model efficiency. To augment its information extraction capability, we design the multi-scale pose feature extraction (MSPFE) module, which facilitates the extraction of rich pose features, ultimately enhancing the model's performance. Moreover, the proposed predefined pose-to-vertex lifting (PPVL) method improves vertex feature representation, further boosting reconstruction performance. Extensive experiments on the FreiHAND dataset demonstrate the state-of-the-art performance and unparalleled inference speed of STMR compared with similar backbone methods, showcasing its efficiency and effectiveness. The code is available at https://github.com/SmallXieGithub/STMR.