Abstract:The Rubiks Cube, with its vast state space and sparse reward structure, presents a significant challenge for reinforcement learning (RL) due to the difficulty of reaching rewarded states. Previous research addressed this by propagating cost-to-go estimates from the solved state and incorporating search techniques. These approaches differ from human strategies that start from fully scrambled cubes, which can be tricky for solving a general sparse-reward problem. In this paper, we introduce a novel RL algorithm using policy gradient methods to solve the Rubiks Cube without relying on near solved-state sampling. Our approach employs a neural network to predict cost patterns between states, allowing the agent to learn directly from scrambled states. Our method was tested on the 2x2x2 Rubiks Cube, where the cube was scrambled 50,000 times, and the model successfully solved it in over 99.4% of cases. Notably, this result was achieved using only the policy network without relying on tree search as in previous methods, demonstrating its effectiveness and potential for broader applications in sparse-reward problems.
Abstract:T-cell receptors (TCRs) play a crucial role in the immune system by recognizing and binding to specific antigens presented by infected or cancerous cells. Understanding the sequence patterns of TCRs is essential for developing targeted immune therapies and designing effective vaccines. Language models, such as auto-regressive transformers, offer a powerful solution to this problem by learning the probability distributions of TCR repertoires, enabling the generation of new TCR sequences that inherit the underlying patterns of the repertoire. We introduce TCR-GPT, a probabilistic model built on a decoder-only transformer architecture, designed to uncover and replicate sequence patterns in TCR repertoires. TCR-GPT demonstrates an accuracy of 0.953 in inferring sequence probability distributions measured by Pearson correlation coefficient. Furthermore, by leveraging Reinforcement Learning(RL), we adapted the distribution of TCR sequences to generate TCRs capable of recognizing specific peptides, offering significant potential for advancing targeted immune therapies and vaccine development. With the efficacy of RL, fine-tuned pretrained TCR-GPT models demonstrated the ability to produce TCR repertoires likely to bind specific peptides, illustrating RL's efficiency in enhancing the model's adaptability to the probability distributions of biologically relevant TCR sequences.
Abstract:Sparse optical flow is widely used in various computer vision tasks, however assuming brightness consistency limits its performance in High Dynamic Range (HDR) environments. In this work, a lightweight network is used to extract illumination robust convolutional features and corners with strong invariance. Modifying the typical brightness consistency of the optical flow method to the convolutional feature consistency yields the light-robust hybrid optical flow method. The proposed network runs at 190 FPS on a commercial CPU because it uses only four convolutional layers to extract feature maps and score maps simultaneously. Since the shallow network is difficult to train directly, a deep network is designed to compute the reliability map that helps it. An end-to-end unsupervised training mode is used for both networks. To validate the proposed method, we compare corner repeatability and matching performance with origin optical flow under dynamic illumination. In addition, a more accurate visual inertial system is constructed by replacing the optical flow method in VINS-Mono. In a public HDR dataset, it reduces translation errors by 93\%. The code is publicly available at https://github.com/linyicheng1/LET-NET.
Abstract:Tiny machine learning (tinyML) has emerged during the past few years aiming to deploy machine learning models to embedded AI processors with highly constrained memory and computation capacity. Low precision quantization is an important model compression technique that can greatly reduce both memory consumption and computation cost of model inference. In this study, we focus on post-training quantization (PTQ) algorithms that quantize a model to low-bit (less than 8-bit) precision with only a small set of calibration data and benchmark them on different tinyML use cases. To achieve a fair comparison, we build a simulated quantization framework to investigate recent PTQ algorithms. Furthermore, we break down those algorithms into essential components and re-assembled a generic PTQ pipeline. With ablation study on different alternatives of components in the pipeline, we reveal key design choices when performing low precision quantization. We hope this work could provide useful data points and shed lights on the future research of low precision quantization.