Abstract:Drawing on the intricate structures of the brain, Spiking Neural Networks (SNNs) emerge as a transformative development in artificial intelligence, closely emulating the complex dynamics of biological neural networks. While SNNs show promising efficiency on specialized sparse-computational hardware, their practical training often relies on conventional GPUs. This reliance frequently leads to extended computation times when contrasted with traditional Artificial Neural Networks (ANNs), presenting significant hurdles for advancing SNN research. To navigate this challenge, we present a novel temporal fusion method, specifically designed to expedite the propagation dynamics of SNNs on GPU platforms, which serves as an enhancement to the current significant approaches for handling deep learning tasks with SNNs. This method underwent thorough validation through extensive experiments in both authentic training scenarios and idealized conditions, confirming its efficacy and adaptability for single and multi-GPU systems. Benchmarked against various existing SNN libraries/implementations, our method achieved accelerations ranging from $5\times$ to $40\times$ on NVIDIA A100 GPUs. Publicly available experimental codes can be found at https://github.com/EMI-Group/snn-temporal-fusion.
Abstract:Recently, tile pruning has been widely studied to accelerate the inference of deep neural networks (DNNs). However, we found that the loss due to tile pruning, which can eliminate important elements together with unimportant elements, is large on trained DNNs. In this study, we propose a one-shot reparameterization method, called TileTrans, to reduce the loss of tile pruning. Specifically, we repermute the rows or columns of the weight matrix such that the model architecture can be kept unchanged after reparameterization. This repermutation realizes the reparameterization of the DNN model without any retraining. The proposed reparameterization method combines important elements into the same tile; thus, preserving the important elements after the tile pruning. Furthermore, TileTrans can be seamlessly integrated into existing tile pruning methods because it is a pre-processing method executed before pruning, which is orthogonal to most existing methods. The experimental results demonstrate that our method is essential in reducing the loss of tile pruning on DNNs. Specifically, the accuracy is improved by up to 17% for AlexNet while 5% for ResNet-34, where both models are pre-trained on ImageNet.