Abstract:Long-range imaging inevitably suffers from atmospheric turbulence with severe geometric distortions due to random refraction of light. The further the distance, the more severe the disturbance. Despite existing research has achieved great progress in tackling short-range turbulence, there is less attention paid to long-range turbulence with significant distortions. To address this dilemma and advance the field, we construct a large-scale real long-range atmospheric turbulence dataset (RLR-AT), including 1500 turbulence sequences spanning distances from 1 Km to 13 Km. The advantages of RLR-AT compared to existing ones: turbulence with longer-distances and higher-diversity, scenes with greater-variety and larger-scale. Moreover, most existing work adopts either registration-based or decomposition-based methods to address distortions through one-step mitigation. However, they fail to effectively handle long-range turbulence due to its significant pixel displacements. In this work, we propose a coarse-to-fine framework to handle severe distortions, which cooperates dynamic turbulence and static background priors (CDSP). On the one hand, we discover the pixel motion statistical prior of turbulence, and propose a frequency-aware reference frame for better large-scale distortion registration, greatly reducing the burden of refinement. On the other hand, we take advantage of the static prior of background, and propose a subspace-based low-rank tensor refinement model to eliminate the misalignments inevitably left by registration while well preserving details. The dynamic and static priors complement to each other, facilitating us to progressively mitigate long-range turbulence with severe distortions. Extensive experiments demonstrate that the proposed method outperforms SOTA methods on different datasets.
Abstract:This report reviews the results of the GT-Rain challenge on single image deraining at the UG2+ workshop at CVPR 2023. The aim of this competition is to study the rainy weather phenomenon in real world scenarios, provide a novel real world rainy image dataset, and to spark innovative ideas that will further the development of single image deraining methods on real images. Submissions were trained on the GT-Rain dataset and evaluated on an extension of the dataset consisting of 15 additional scenes. Scenes in GT-Rain are comprised of real rainy image and ground truth image captured moments after the rain had stopped. 275 participants were registered in the challenge and 55 competed in the final testing phase.
Abstract:Learning-based image deraining methods have made great progress. However, the lack of large-scale high-quality paired training samples is the main bottleneck to hamper the real image deraining (RID). To address this dilemma and advance RID, we construct a Large-scale High-quality Paired real rain benchmark (LHP-Rain), including 3000 video sequences with 1 million high-resolution (1920*1080) frame pairs. The advantages of the proposed dataset over the existing ones are three-fold: rain with higher-diversity and larger-scale, image with higher-resolution and higher-quality ground-truth. Specifically, the real rains in LHP-Rain not only contain the classical rain streak/veiling/occlusion in the sky, but also the \textbf{splashing on the ground} overlooked by deraining community. Moreover, we propose a novel robust low-rank tensor recovery model to generate the GT with better separating the static background from the dynamic rain. In addition, we design a simple transformer-based single image deraining baseline, which simultaneously utilize the self-attention and cross-layer attention within the image and rain layer with discriminative feature representation. Extensive experiments verify the superiority of the proposed dataset and deraining method over state-of-the-art.
Abstract:In this technical report, we briefly introduce the solution of our team VIELab-HUST for coded target restoration through atmospheric turbulence in CVPR 2023 UG$^2$+ Track 2.2. In this task, we propose an efficient multi-stage framework to restore a high quality image from distorted frames. Specifically, each distorted frame is initially aligned using image registration to suppress geometric distortion. We subsequently select the sharpest set of registered frames by employing a frame selection approach based on image sharpness, and average them to produce an image that is largely free of geometric distortion, albeit with blurriness. A learning-based deblurring method is then applied to remove the residual blur in the averaged image. Finally, post-processing techniques are utilized to further enhance the quality of the output image. Our framework is capable of handling different kinds of coded target dataset provided in the final testing phase, and ranked 1st on the final leaderboard. Our code will be available at https://github.com/xsqhust/Turbulence_Removal.
Abstract:In this technical report, we present the solution developed by our team VIELab-HUST for text recognition through atmospheric turbulence in Track 2.1 of the CVPR 2023 UG$^{2}$+ challenge. Our solution involves an efficient multi-stage framework that restores a high-quality image from distorted frames. Specifically, a frame selection algorithm based on sharpness is first utilized to select the sharpest set of distorted frames. Next, each frame in the selected frames is aligned to suppress geometric distortion through optical-flow-based image registration. Then, a region-based image fusion method with DT-CWT is utilized to mitigate the blur caused by the turbulence. Finally, a learning-based deartifacts method is applied to remove the artifacts in the fused image, generating a high-quality outuput. Our framework can handle both hot-air text dataset and turbulence text dataset provided in the final testing phase and achieved 1st place in text recognition accuracy. Our code will be available at https://github.com/xsqhust/Turbulence_Removal.
Abstract:In this technical report, we briefly introduce the solution of our team HUST\li VIE for GT-Rain Challenge in CVPR 2023 UG$^{2}$+ Track 3. In this task, we propose an efficient two-stage framework to reconstruct a clear image from rainy frames. Firstly, a low-rank based video deraining method is utilized to generate pseudo GT, which fully takes the advantage of multi and aligned rainy frames. Secondly, a transformer-based single image deraining network Uformer is implemented to pre-train on large real rain dataset and then fine-tuned on pseudo GT to further improve image restoration. Moreover, in terms of visual pleasing effect, a comprehensive image processor module is utilized at the end of pipeline. Our overall framework is elaborately designed and able to handle both heavy rainy and foggy sequences provided in the final testing phase. Finally, we rank 1st on the average structural similarity (SSIM) and rank 2nd on the average peak signal-to-noise ratio (PSNR). Our code is available at https://github.com/yunguo224/UG2_Deraining.