Abstract:Long-range imaging inevitably suffers from atmospheric turbulence with severe geometric distortions due to random refraction of light. The further the distance, the more severe the disturbance. Despite existing research has achieved great progress in tackling short-range turbulence, there is less attention paid to long-range turbulence with significant distortions. To address this dilemma and advance the field, we construct a large-scale real long-range atmospheric turbulence dataset (RLR-AT), including 1500 turbulence sequences spanning distances from 1 Km to 13 Km. The advantages of RLR-AT compared to existing ones: turbulence with longer-distances and higher-diversity, scenes with greater-variety and larger-scale. Moreover, most existing work adopts either registration-based or decomposition-based methods to address distortions through one-step mitigation. However, they fail to effectively handle long-range turbulence due to its significant pixel displacements. In this work, we propose a coarse-to-fine framework to handle severe distortions, which cooperates dynamic turbulence and static background priors (CDSP). On the one hand, we discover the pixel motion statistical prior of turbulence, and propose a frequency-aware reference frame for better large-scale distortion registration, greatly reducing the burden of refinement. On the other hand, we take advantage of the static prior of background, and propose a subspace-based low-rank tensor refinement model to eliminate the misalignments inevitably left by registration while well preserving details. The dynamic and static priors complement to each other, facilitating us to progressively mitigate long-range turbulence with severe distortions. Extensive experiments demonstrate that the proposed method outperforms SOTA methods on different datasets.
Abstract:Image compression and denoising represent fundamental challenges in image processing with many real-world applications. To address practical demands, current solutions can be categorized into two main strategies: 1) sequential method; and 2) joint method. However, sequential methods have the disadvantage of error accumulation as there is information loss between multiple individual models. Recently, the academic community began to make some attempts to tackle this problem through end-to-end joint methods. Most of them ignore that different regions of noisy images have different characteristics. To solve these problems, in this paper, our proposed signal-to-noise ratio~(SNR) aware joint solution exploits local and non-local features for image compression and denoising simultaneously. We design an end-to-end trainable network, which includes the main encoder branch, the guidance branch, and the signal-to-noise ratio~(SNR) aware branch. We conducted extensive experiments on both synthetic and real-world datasets, demonstrating that our joint solution outperforms existing state-of-the-art methods.
Abstract:In this technical report, we briefly introduce the solution of our team VIELab-HUST for coded target restoration through atmospheric turbulence in CVPR 2023 UG$^2$+ Track 2.2. In this task, we propose an efficient multi-stage framework to restore a high quality image from distorted frames. Specifically, each distorted frame is initially aligned using image registration to suppress geometric distortion. We subsequently select the sharpest set of registered frames by employing a frame selection approach based on image sharpness, and average them to produce an image that is largely free of geometric distortion, albeit with blurriness. A learning-based deblurring method is then applied to remove the residual blur in the averaged image. Finally, post-processing techniques are utilized to further enhance the quality of the output image. Our framework is capable of handling different kinds of coded target dataset provided in the final testing phase, and ranked 1st on the final leaderboard. Our code will be available at https://github.com/xsqhust/Turbulence_Removal.
Abstract:In this technical report, we present the solution developed by our team VIELab-HUST for text recognition through atmospheric turbulence in Track 2.1 of the CVPR 2023 UG$^{2}$+ challenge. Our solution involves an efficient multi-stage framework that restores a high-quality image from distorted frames. Specifically, a frame selection algorithm based on sharpness is first utilized to select the sharpest set of distorted frames. Next, each frame in the selected frames is aligned to suppress geometric distortion through optical-flow-based image registration. Then, a region-based image fusion method with DT-CWT is utilized to mitigate the blur caused by the turbulence. Finally, a learning-based deartifacts method is applied to remove the artifacts in the fused image, generating a high-quality outuput. Our framework can handle both hot-air text dataset and turbulence text dataset provided in the final testing phase and achieved 1st place in text recognition accuracy. Our code will be available at https://github.com/xsqhust/Turbulence_Removal.