Abstract:Transformer-based diffusion models, dubbed Diffusion Transformers (DiTs), have achieved state-of-the-art performance in image and video generation tasks. However, their large model size and slow inference speed limit their practical applications, calling for model compression methods such as quantization. Unfortunately, existing DiT quantization methods overlook (1) the impact of reconstruction and (2) the varying quantization sensitivities across different layers, which hinder their achievable performance. To tackle these issues, we propose innovative time-aware quantization for DiTs (TaQ-DiT). Specifically, (1) we observe a non-convergence issue when reconstructing weights and activations separately during quantization and introduce a joint reconstruction method to resolve this problem. (2) We discover that Post-GELU activations are particularly sensitive to quantization due to their significant variability across different denoising steps as well as extreme asymmetries and variations within each step. To address this, we propose time-variance-aware transformations to facilitate more effective quantization. Experimental results show that when quantizing DiTs' weights to 4-bit and activations to 8-bit (W4A8), our method significantly surpasses previous quantization methods.
Abstract:Video Individual Counting (VIC) aims to predict the number of unique individuals in a single video. % Existing methods learn representations based on trajectory labels for individuals, which are annotation-expensive. % To provide a more realistic reflection of the underlying practical challenge, we introduce a weakly supervised VIC task, wherein trajectory labels are not provided. Instead, two types of labels are provided to indicate traffic entering the field of view (inflow) and leaving the field view (outflow). % We also propose the first solution as a baseline that formulates the task as a weakly supervised contrastive learning problem under group-level matching. In doing so, we devise an end-to-end trainable soft contrastive loss to drive the network to distinguish inflow, outflow, and the remaining. % To facilitate future study in this direction, we generate annotations from the existing VIC datasets SenseCrowd and CroHD and also build a new dataset, UAVVIC. % Extensive results show that our baseline weakly supervised method outperforms supervised methods, and thus, little information is lost in the transition to the more practically relevant weakly supervised task. The code and trained model will be public at \href{https://github.com/streamer-AP/CGNet}{CGNet}
Abstract:Crowd counting is usually handled in a density map regression fashion, which is supervised via a L2 loss between the predicted density map and ground truth. To effectively regulate models, various improved L2 loss functions have been proposed to find a better correspondence between predicted density and annotation positions. In this paper, we propose to predict the density map at one resolution but measure the density map at multiple resolutions. By maximizing the posterior probability in such a setting, we obtain a log-formed multi-resolution L2-difference loss, where the traditional single-resolution L2 loss is its particular case. We mathematically prove it is superior to a single-resolution L2 loss. Without bells and whistles, the proposed loss substantially improves several baselines and performs favorably compared to state-of-the-art methods on four crowd counting datasets, ShanghaiTech A & B, UCF-QNRF, and JHU-Crowd++.
Abstract:Crowd localization aims to predict the spatial position of humans in a crowd scenario. We observe that the performance of existing methods is challenged from two aspects: (i) ranking inconsistency between test and training phases; and (ii) fixed anchor resolution may underfit or overfit crowd densities of local regions. To address these problems, we design a supervision target reassignment strategy for training to reduce ranking inconsistency and propose an anchor pyramid scheme to adaptively determine the anchor density in each image region. Extensive experimental results on three widely adopted datasets (ShanghaiTech A\&B, JHU-CROWD++, UCF-QNRF) demonstrate the favorable performance against several state-of-the-art methods.