Abstract:Collaborative Mobile Crowd Sensing (CMCS) enhances data quality and coverage by promoting teamwork in task sensing, with worker recruitment representing a complex multi-objective optimization problem. Existing strategies mainly focus on the characteristics of workers themselves, neglecting the asymmetric trust relationships between them, which affects the rationality of task utility evaluation. To address this, this paper first employs the Mini-Batch K-Means clustering algorithm and deploys edge servers to enable efficient distributed worker recruitment. Historical data and task requirements are utilized to obtain workers' ability types and distances. A trust-directed graph in the worker's social network is input into the Graph Convolutional Network (GCN) framework for training, capturing asymmetric trustworthiness between worker pairs. Privacy leakage is prevented in CMCS scenarios through high trust values between workers. Ultimately, an undirected recruitment graph is constructed using workers' abilities, trust values, and distance weights, transforming the worker recruitment problem into a Maximum Weight Average Subgraph Problem (MWASP). A Tabu Search Recruitment (TSR) algorithm is proposed to rationally recruit a balanced multi-objective optimal task utility worker set for each task. Extensive simulation experiments on four real-world datasets demonstrate the effectiveness of the proposed strategy, outperforming other strategies.
Abstract:Magnetic resonance imaging (MRI) is an important medical imaging modality, but its acquisition speed is quite slow due to the physiological limitations. Recently, super-resolution methods have shown excellent performance in accelerating MRI. In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time. Therefore, we proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism to generate high-resolution MR images from low-resolution MR images by a factor of 2. We implemented our model on pelvic images from healthy subjects as training and validation data, while those data from patients were used for testing. The MR dataset was obtained using different imaging sequences, including T2, T2W SPAIR, and mDIXON-W. Four methods, i.e., BICUBIC, SRCNN, SRGAN, and EDSR were used for comparison. Structural similarity, peak signal to noise ratio, root mean square error, and variance inflation factor were used as calculation indicators to evaluate the performances of the proposed method. Various experimental results showed that our method can better restore the details of the high-resolution MR image as compared to the other methods. In addition, the reconstructed high-resolution MR image can provide better lesion textures in the tumor patients, which is promising to be used in clinical diagnosis.
Abstract:Deep learning based generative adversarial networks (GAN) can effectively perform image reconstruction with under-sampled MR data. In general, a large number of training samples are required to improve the reconstruction performance of a certain model. However, in real clinical applications, it is difficult to obtain tens of thousands of raw patient data to train the model since saving k-space data is not in the routine clinical flow. Therefore, enhancing the generalizability of a network based on small samples is urgently needed. In this study, three novel applications were explored based on parallel imaging combined with the GAN model (PI-GAN) and transfer learning. The model was pre-trained with public Calgary brain images and then fine-tuned for use in (1) patients with tumors in our center; (2) different anatomies, including knee and liver; (3) different k-space sampling masks with acceleration factors (AFs) of 2 and 6. As for the brain tumor dataset, the transfer learning results could remove the artifacts found in PI-GAN and yield smoother brain edges. The transfer learning results for the knee and liver were superior to those of the PI-GAN model trained with its own dataset using a smaller number of training cases. However, the learning procedure converged more slowly in the knee datasets compared to the learning in the brain tumor datasets. The reconstruction performance was improved by transfer learning both in the models with AFs of 2 and 6. Of these two models, the one with AF=2 showed better results. The results also showed that transfer learning with the pre-trained model could solve the problem of inconsistency between the training and test datasets and facilitate generalization to unseen data.
Abstract:Two hitherto disconnected threads of research, diverse exploration (DE) and maximum entropy RL have addressed a wide range of problems facing reinforcement learning algorithms via ostensibly distinct mechanisms. In this work, we identify a connection between these two approaches. First, a discriminator-based diversity objective is put forward and connected to commonly used divergence measures. We then extend this objective to the maximum entropy framework and propose an algorithm Maximum Entropy Diverse Exploration (MEDE) which provides a principled method to learn diverse behaviors. A theoretical investigation shows that the set of policies learned by MEDE capture the same modalities as the optimal maximum entropy policy. In effect, the proposed algorithm disentangles the maximum entropy policy into its diverse, constituent policies. Experiments show that MEDE is superior to the state of the art in learning high performing and diverse policies.
Abstract:We address the challenge of effective exploration while maintaining good performance in policy gradient methods. As a solution, we propose diverse exploration (DE) via conjugate policies. DE learns and deploys a set of conjugate policies which can be conveniently generated as a byproduct of conjugate gradient descent. We provide both theoretical and empirical results showing the effectiveness of DE at achieving exploration, improving policy performance, and the advantage of DE over exploration by random policy perturbations.