Abstract:In panorama understanding, the widely used equirectangular projection (ERP) entails boundary discontinuity and spatial distortion. It severely deteriorates the conventional CNNs and vision Transformers on panoramas. In this paper, we propose a simple yet effective architecture named PanoSwin to learn panorama representations with ERP. To deal with the challenges brought by equirectangular projection, we explore a pano-style shift windowing scheme and novel pitch attention to address the boundary discontinuity and the spatial distortion, respectively. Besides, based on spherical distance and Cartesian coordinates, we adapt absolute positional embeddings and relative positional biases for panoramas to enhance panoramic geometry information. Realizing that planar image understanding might share some common knowledge with panorama understanding, we devise a novel two-stage learning framework to facilitate knowledge transfer from the planar images to panoramas. We conduct experiments against the state-of-the-art on various panoramic tasks, i.e., panoramic object detection, panoramic classification, and panoramic layout estimation. The experimental results demonstrate the effectiveness of PanoSwin in panorama understanding.
Abstract:Document-level relation extraction (DocRE) attracts more research interest recently. While models achieve consistent performance gains in DocRE, their underlying decision rules are still understudied: Do they make the right predictions according to rationales? In this paper, we take the first step toward answering this question and then introduce a new perspective on comprehensively evaluating a model. Specifically, we first conduct annotations to provide the rationales considered by humans in DocRE. Then, we conduct investigations and reveal the fact that: In contrast to humans, the representative state-of-the-art (SOTA) models in DocRE exhibit different decision rules. Through our proposed RE-specific attacks, we next demonstrate that the significant discrepancy in decision rules between models and humans severely damages the robustness of models and renders them inapplicable to real-world RE scenarios. After that, we introduce mean average precision (MAP) to evaluate the understanding and reasoning capabilities of models. According to the extensive experimental results, we finally appeal to future work to consider evaluating both performance and the understanding ability of models for the development of their applications. We make our annotations and code publicly available.
Abstract:3D reconstruction of novel categories based on few-shot learning is appealing in real-world applications and attracts increasing research interests. Previous approaches mainly focus on how to design shape prior models for different categories. Their performance on unseen categories is not very competitive. In this paper, we present a Memory Prior Contrastive Network (MPCN) that can store shape prior knowledge in a few-shot learning based 3D reconstruction framework. With the shape memory, a multi-head attention module is proposed to capture different parts of a candidate shape prior and fuse these parts together to guide 3D reconstruction of novel categories. Besides, we introduce a 3D-aware contrastive learning method, which can not only complement the retrieval accuracy of memory network, but also better organize image features for downstream tasks. Compared with previous few-shot 3D reconstruction methods, MPCN can handle the inter-class variability without category annotations. Experimental results on a benchmark synthetic dataset and the Pascal3D+ real-world dataset show that our model outperforms the current state-of-the-art methods significantly.
Abstract:Image-based object pose estimation sounds amazing because in real applications the shape of object is oftentimes not available or not easy to take like photos. Although it is an advantage to some extent, un-explored shape information in 3D vision learning problem looks like "flaws in jade". In this paper, we deal with the problem in a reasonable new setting, namely 3D shape is exploited in the training process, and the testing is still purely image-based. We enhance the performance of image-based methods for category-agnostic object pose estimation by exploiting 3D knowledge learned by a multi-modal method. Specifically, we propose a novel contrastive knowledge distillation framework that effectively transfers 3D-augmented image representation from a multi-modal model to an image-based model. We integrate contrastive learning into the two-stage training procedure of knowledge distillation, which formulates an advanced solution to combine these two approaches for cross-modal tasks. We experimentally report state-of-the-art results compared with existing category-agnostic image-based methods by a large margin (up to +5% improvement on ObjectNet3D dataset), demonstrating the effectiveness of our method.
Abstract:Self-supervised representation learning of Multivariate Time Series (MTS) is a challenging task and attracts increasing research interests in recent years. Many previous works focus on the pretext task of self-supervised learning and usually neglect the complex problem of MTS encoding, leading to unpromising results. In this paper, we tackle this challenge from two aspects: encoder and pretext task, and propose a unified channel-aware self-supervised learning framework CaSS. Specifically, we first design a new Transformer-based encoder Channel-aware Transformer (CaT) to capture the complex relationships between different time channels of MTS. Second, we combine two novel pretext tasks Next Trend Prediction (NTP) and Contextual Similarity (CS) for the self-supervised representation learning with our proposed encoder. Extensive experiments are conducted on several commonly used benchmark datasets. The experimental results show that our framework achieves new state-of-the-art comparing with previous self-supervised MTS representation learning methods (up to +7.70\% improvement on LSST dataset) and can be well applied to the downstream MTS classification.
Abstract:Aerial pixel-wise scene perception of the surrounding environment is an important task for UAVs (Unmanned Aerial Vehicles). Previous research works mainly adopt conventional pinhole cameras or fisheye cameras as the imaging device. However, these imaging systems cannot achieve large Field of View (FoV), small size, and lightweight at the same time. To this end, we design a UAV system with a Panoramic Annular Lens (PAL), which has the characteristics of small size, low weight, and a 360-degree annular FoV. A lightweight panoramic annular semantic segmentation neural network model is designed to achieve high-accuracy and real-time scene parsing. In addition, we present the first drone-perspective panoramic scene segmentation dataset Aerial-PASS, with annotated labels of track, field, and others. A comprehensive variety of experiments shows that the designed system performs satisfactorily in aerial panoramic scene parsing. In particular, our proposed model strikes an excellent trade-off between segmentation performance and inference speed suitable, validated on both public street-scene and our established aerial-scene datasets.