Abstract:Existing game AI research mainly focuses on enhancing agents' abilities to win games, but this does not inherently make humans have a better experience when collaborating with these agents. For example, agents may dominate the collaboration and exhibit unintended or detrimental behaviors, leading to poor experiences for their human partners. In other words, most game AI agents are modeled in a "self-centered" manner. In this paper, we propose a "human-centered" modeling scheme for collaborative agents that aims to enhance the experience of humans. Specifically, we model the experience of humans as the goals they expect to achieve during the task. We expect that agents should learn to enhance the extent to which humans achieve these goals while maintaining agents' original abilities (e.g., winning games). To achieve this, we propose the Reinforcement Learning from Human Gain (RLHG) approach. The RLHG approach introduces a "baseline", which corresponds to the extent to which humans primitively achieve their goals, and encourages agents to learn behaviors that can effectively enhance humans in achieving their goals better. We evaluate the RLHG agent in the popular Multi-player Online Battle Arena (MOBA) game, Honor of Kings, by conducting real-world human-agent tests. Both objective performance and subjective preference results show that the RLHG agent provides participants better gaming experience.
Abstract:Airport runway segmentation can effectively reduce the accident rate during the landing phase, which has the largest risk of flight accidents. With the rapid development of deep learning, related methods have good performance on segmentation tasks and can be well adapted to complex scenes. However, the lack of large-scale, publicly available datasets in this field makes the development of methods based on deep learning difficult. Therefore, we propose a Benchmark for Airport Runway Segmentation, named BARS. Meanwhile, a semi-automatic annotation pipeline is designed to reduce the workload of annotation. BARS has the largest dataset with the richest categories and the only instance annotation in the field. The dataset, which is collected using the X-Plane simulation platform, contains 10,002 images and 29,347 instances with three categories. We evaluate eight representative instance segmentation methods on BARS and analyze their performance. Based on the characteristic of the airport runway with a regular shape, we propose a plug-and-play smoothing post-processing module (SPPM) and a contour point constraint loss (CPCL) function to smooth segmentation results for mask-based and contour-based methods, respectively. Furthermore, a novel evaluation metric named average smoothness (AS) is developed to measure smoothness. The experiments show that existing instance segmentation methods can achieve prediction results with good performance on BARS. SPPM and CPCL can improve the average accuracy by 0.9% and 1.13%, respectively. And the average smoothness enhancements for SPPM and CPCL are more than 50% and 28%, respectively. Our work will be released at https://github.com/c-wenhui/BARS.