Abstract:Instruction Tuning has the potential to stimulate or enhance specific capabilities of large language models (LLMs). However, achieving the right balance of data is crucial to prevent catastrophic forgetting and interference between tasks. To address these limitations and enhance training flexibility, we propose the Mixture-of-LoRAs (MoA) architecture which is a novel and parameter-efficient tuning method designed for multi-task learning with LLMs. In this paper, we start by individually training multiple domain-specific LoRA modules using corresponding supervised corpus data. These LoRA modules can be aligned with the expert design principles observed in Mixture-of-Experts (MoE). Subsequently, we combine the multiple LoRAs using an explicit routing strategy and introduce domain labels to facilitate multi-task learning, which help prevent interference between tasks and ultimately enhances the performance of each individual task. Furthermore, each LoRA model can be iteratively adapted to a new domain, allowing for quick domain-specific adaptation. Experiments on diverse tasks demonstrate superior and robust performance, which can further promote the wide application of domain-specific LLMs.
Abstract:Designing efficient network structures has always been the core content of neural network research. ResNet and its variants have proved to be efficient in architecture. However, how to theoretically character the influence of network structure on performance is still vague. With the help of techniques in complex networks, We here provide a natural yet efficient extension to ResNet by folding its backbone chain. Our architecture has two structural features when being mapped to directed acyclic graphs: First is a higher degree of the disorder compared with ResNet, which let ResNetX explore a larger number of feature maps with different sizes of receptive fields. Second is a larger proportion of shorter paths compared to ResNet, which improves the direct flow of information through the entire network. Our architecture exposes a new dimension, namely "fold depth", in addition to existing dimensions of depth, width, and cardinality. Our architecture is a natural extension to ResNet, and can be integrated with existing state-of-the-art methods with little effort. Image classification results on CIFAR-10 and CIFAR-100 benchmarks suggested that our new network architecture performs better than ResNet.
Abstract:In reinforcement learning, building policies of high-quality is challenging when the feature space of states is small and the training data is limited. Directly transferring data or knowledge from an agent to another agent will not work due to the privacy requirement of data and models. In this paper, we propose a novel reinforcement learning approach to considering the privacy requirement and building Q-network for each agent with the help of other agents, namely federated reinforcement learning (FRL). To protect the privacy of data and models, we exploit Gausian differentials on the information shared with each other when updating their local models. In the experiment, we evaluate our FRL framework in two diverse domains, Grid-world and Text2Action domains, by comparing to various baselines.
Abstract:Extracting action sequences from natural language texts is challenging, as it requires commonsense inferences based on world knowledge. Although there has been work on extracting action scripts, instructions, navigation actions, etc., they require that either the set of candidate actions be provided in advance, or that action descriptions are restricted to a specific form, e.g., description templates. In this paper, we aim to extract action sequences from texts in free natural language, i.e., without any restricted templates, provided the candidate set of actions is unknown. We propose to extract action sequences from texts based on the deep reinforcement learning framework. Specifically, we view "selecting" or "eliminating" words from texts as "actions", and the texts associated with actions as "states". We then build Q-networks to learn the policy of extracting actions and extract plans from the labeled texts. We demonstrate the effectiveness of our approach on several datasets with comparison to state-of-the-art approaches, including online experiments interacting with humans.