Abstract:Leveraging the autonomous decision-making capabilities of large language models (LLMs) demonstrates superior performance in reasoning tasks. Despite the successes of iterative or recursive retrieval-augmented generation (RAG), they often are trapped in a single solution space when confronted with complex tasks. In this paper, we propose a novel thinking pattern in RAG which integrates system analysis with efficient reasoning actions, significantly activating intrinsic reasoning capabilities and expanding the solution space of specific tasks via Monte Carlo Tree Search (MCTS), dubbed AirRAG. Specifically, our approach designs five fundamental reasoning actions that are expanded to a wide tree-based reasoning spaces using MCTS. The extension also uses self-consistency verification to explore potential reasoning paths and implement inference scaling. In addition, computationally optimal strategies are used to apply more inference computation to key actions to achieve further performance improvements. Experimental results demonstrate the effectiveness of AirRAG through considerable performance gains over complex QA datasets. Furthermore, AirRAG is flexible and lightweight, making it easy to integrate with other advanced technologies.
Abstract:Instruction Tuning has the potential to stimulate or enhance specific capabilities of large language models (LLMs). However, achieving the right balance of data is crucial to prevent catastrophic forgetting and interference between tasks. To address these limitations and enhance training flexibility, we propose the Mixture-of-LoRAs (MoA) architecture which is a novel and parameter-efficient tuning method designed for multi-task learning with LLMs. In this paper, we start by individually training multiple domain-specific LoRA modules using corresponding supervised corpus data. These LoRA modules can be aligned with the expert design principles observed in Mixture-of-Experts (MoE). Subsequently, we combine the multiple LoRAs using an explicit routing strategy and introduce domain labels to facilitate multi-task learning, which help prevent interference between tasks and ultimately enhances the performance of each individual task. Furthermore, each LoRA model can be iteratively adapted to a new domain, allowing for quick domain-specific adaptation. Experiments on diverse tasks demonstrate superior and robust performance, which can further promote the wide application of domain-specific LLMs.