Abstract:Click-Through Rate (CTR) prediction, crucial in applications like recommender systems and online advertising, involves ranking items based on the likelihood of user clicks. User behavior sequence modeling has marked progress in CTR prediction, which extracts users' latent interests from their historical behavior sequences to facilitate accurate CTR prediction. Recent research explores using implicit feedback sequences, like unclicked records, to extract diverse user interests. However, these methods encounter key challenges: 1) temporal misalignment due to disparate sequence time ranges and 2) the lack of fine-grained interaction among feedback sequences. To address these challenges, we propose a novel framework called TEM4CTR, which ensures temporal alignment among sequences while leveraging auxiliary feedback information to enhance click behavior at the item level through a representation projection mechanism. Moreover, this projection-based information transfer module can effectively alleviate the negative impact of irrelevant or even potentially detrimental components of the auxiliary feedback information on the learning process of click behavior. Comprehensive experiments on public and industrial datasets confirm the superiority and effectiveness of TEM4CTR, showcasing the significance of temporal alignment in multi-feedback modeling.
Abstract:Designing efficient network structures has always been the core content of neural network research. ResNet and its variants have proved to be efficient in architecture. However, how to theoretically character the influence of network structure on performance is still vague. With the help of techniques in complex networks, We here provide a natural yet efficient extension to ResNet by folding its backbone chain. Our architecture has two structural features when being mapped to directed acyclic graphs: First is a higher degree of the disorder compared with ResNet, which let ResNetX explore a larger number of feature maps with different sizes of receptive fields. Second is a larger proportion of shorter paths compared to ResNet, which improves the direct flow of information through the entire network. Our architecture exposes a new dimension, namely "fold depth", in addition to existing dimensions of depth, width, and cardinality. Our architecture is a natural extension to ResNet, and can be integrated with existing state-of-the-art methods with little effort. Image classification results on CIFAR-10 and CIFAR-100 benchmarks suggested that our new network architecture performs better than ResNet.