Abstract:Recent advancements in image translation for enhancing mixed-exposure images have demonstrated the transformative potential of deep learning algorithms. However, addressing extreme exposure variations in images remains a significant challenge due to the inherent complexity and contrast inconsistencies across regions. Current methods often struggle to adapt effectively to these variations, resulting in suboptimal performance. In this work, we propose HipyrNet, a novel approach that integrates a HyperNetwork within a Laplacian Pyramid-based framework to tackle the challenges of mixed-exposure image enhancement. The inclusion of a HyperNetwork allows the model to adapt to these exposure variations. HyperNetworks dynamically generates weights for another network, allowing dynamic changes during deployment. In our model, the HyperNetwork employed is used to predict optimal kernels for Feature Pyramid decomposition, which enables a tailored and adaptive decomposition process for each input image. Our enhanced translational network incorporates multiscale decomposition and reconstruction, leveraging dynamic kernel prediction to capture and manipulate features across varying scales. Extensive experiments demonstrate that HipyrNet outperforms existing methods, particularly in scenarios with extreme exposure variations, achieving superior results in both qualitative and quantitative evaluations. Our approach sets a new benchmark for mixed-exposure image enhancement, paving the way for future research in adaptive image translation.
Abstract:In the last few years, the fusion of multi-modal data has been widely studied for various applications such as robotics, gesture recognition, and autonomous navigation. Indeed, high-quality visual sensors are expensive, and consumer-grade sensors produce low-resolution images. Researchers have developed methods to combine RGB color images with non-visual data, such as thermal, to overcome this limitation to improve resolution. Fusing multiple modalities to produce visually appealing, high-resolution images often requires dense models with millions of parameters and a heavy computational load, which is commonly attributed to the intricate architecture of the model. We propose LapGSR, a multimodal, lightweight, generative model incorporating Laplacian image pyramids for guided thermal super-resolution. This approach uses a Laplacian Pyramid on RGB color images to extract vital edge information, which is then used to bypass heavy feature map computation in the higher layers of the model in tandem with a combined pixel and adversarial loss. LapGSR preserves the spatial and structural details of the image while also being efficient and compact. This results in a model with significantly fewer parameters than other SOTA models while demonstrating excellent results on two cross-domain datasets viz. ULB17-VT and VGTSR datasets.
Abstract:The scarcity of comprehensive datasets in the traffic light detection and recognition domain and the poor performance of state-of-the-art models under hostile weather conditions present significant challenges. To address these issues, this paper proposes a novel approach by merging two widely used datasets, LISA and S2TLD. The merged dataset is further processed to tackle class imbalance, a common problem in this domain. This merged dataset becomes our source domain. Synthetic rain and fog are added to the dataset to create our target domain. We employ Fourier Domain Adaptation (FDA) to create a final dataset with a minimized domain gap between the two datasets, helping the model trained on this final dataset adapt to rainy and foggy weather conditions. Additionally, we explore Semi-Supervised Learning (SSL) techniques to leverage the available data more effectively. Experimental results demonstrate that models trained on FDA-augmented images outperform those trained without FDA across confidence-dependent and independent metrics, like mAP50, mAP50-95, Precision, and Recall. The best-performing model, YOLOv8, achieved a Precision increase of 5.1860%, Recall increase of 14.8009%, mAP50 increase of 9.5074%, and mAP50-95 increase of 19.5035%. On average, percentage increases of 7.6892% in Precision, 19.9069% in Recall, 15.8506% in mAP50, and 23.8099% in mAP50-95 were observed across all models, highlighting the effectiveness of FDA in mitigating the impact of adverse weather conditions on model performance. These improvements pave the way for real-world applications where reliable performance in challenging environmental conditions is critical.
Abstract:The increasing adoption of solar energy necessitates advanced methodologies for monitoring and maintenance to ensure optimal performance of solar panel installations. A critical component in this context is the accurate segmentation of solar panels from aerial or satellite imagery, which is essential for identifying operational issues and assessing efficiency. This paper addresses the significant challenges in panel segmentation, particularly the scarcity of annotated data and the labour-intensive nature of manual annotation for supervised learning. We explore and apply Self-Supervised Learning (SSL) to solve these challenges. We demonstrate that SSL significantly enhances model generalization under various conditions and reduces dependency on manually annotated data, paving the way for robust and adaptable solar panel segmentation solutions.
Abstract:Carefully curated and annotated datasets are the foundation of machine learning, with particularly data-hungry deep neural networks forming the core of what is often called Artificial Intelligence (AI). Due to the massive success of deep learning applied to Earth Observation (EO) problems, the focus of the community has been largely on the development of ever-more sophisticated deep neural network architectures and training strategies largely ignoring the overall importance of datasets. For that purpose, numerous task-specific datasets have been created that were largely ignored by previously published review articles on AI for Earth observation. With this article, we want to change the perspective and put machine learning datasets dedicated to Earth observation data and applications into the spotlight. Based on a review of the historical developments, currently available resources are described and a perspective for future developments is formed. We hope to contribute to an understanding that the nature of our data is what distinguishes the Earth observation community from many other communities that apply deep learning techniques to image data, and that a detailed understanding of EO data peculiarities is among the core competencies of our discipline.
Abstract:Identification of regions affected by floods is a crucial piece of information required for better planning and management of post-disaster relief and rescue efforts. Traditionally, remote sensing images are analysed to identify the extent of damage caused by flooding. The data acquired from sensors onboard earth observation satellites are analyzed to detect the flooded regions, which can be affected by low spatial and temporal resolution. However, in recent years, the images acquired from Unmanned Aerial Vehicles (UAVs) have also been utilized to assess post-disaster damage. Indeed, a UAV based platform can be rapidly deployed with a customized flight plan and minimum dependence on the ground infrastructure. This work proposes two approaches for identifying flooded regions in UAV aerial images. The first approach utilizes texture-based unsupervised segmentation to detect flooded areas, while the second uses an artificial neural network on the texture features to classify images as flooded and non-flooded. Unlike the existing works where the models are trained and tested on images of the same geographical regions, this work studies the performance of the proposed model in identifying flooded regions across geographical regions. An F1-score of 0.89 is obtained using the proposed segmentation-based approach which is higher than existing classifiers. The robustness of the proposed approach demonstrates that it can be utilized to identify flooded regions of any region with minimum or no user intervention.
Abstract:In recent years, the development of robust Intelligent transportation systems (ITS) is tackled across the globe to provide better traffic efficiency by reducing frequent traffic problems. As an application of ITS, vehicle re-identification has gained ample interest in the domain of computer vision and robotics. Convolutional neural network (CNN) based methods are developed to perform vehicle re-identification to address key challenges such as occlusion, illumination change, scale, etc. The advancement of transformers in computer vision has opened an opportunity to explore the re-identification process further to enhance performance. In this paper, a framework is developed to perform the re-identification of vehicles across CCTV cameras. To perform re-identification, the proposed framework fuses the vehicle representation learned using a CNN and a transformer model. The framework is tested on a dataset that contains 81 unique vehicle identities observed across 20 CCTV cameras. From the experiments, the fused vehicle re-identification framework yields an mAP of 61.73% which is significantly better when compared with the standalone CNN or transformer model.
Abstract:Forest plays a vital role in reducing greenhouse gas emissions and mitigating climate change besides maintaining the world's biodiversity. The existing satellite-based forest monitoring system utilizes supervised learning approaches that are limited to a particular region and depend on manually annotated data to identify forest. This work envisages forest identification as a few-shot semantic segmentation task to achieve generalization across different geographical regions. The proposed few-shot segmentation approach incorporates a texture attention module in the prototypical network to highlight the texture features of the forest. Indeed, the forest exhibits a characteristic texture different from other classes, such as road, water, etc. In this work, the proposed approach is trained for identifying tropical forests of South Asia and adapted to determine the temperate forest of Central Europe with the help of a few (one image for 1-shot) manually annotated support images of the temperate forest. An IoU of 0.62 for forest class (1-way 1-shot) was obtained using the proposed method, which is significantly higher (0.46 for PANet) than the existing few-shot semantic segmentation approach. This result demonstrates that the proposed approach can generalize across geographical regions for forest identification, creating an opportunity to develop a global forest cover identification tool.
Abstract:UAV based surveillance is gaining much interest worldwide due to its extensive applications in monitoring wildlife, urban planning, disaster management, campus security, etc. These videos are analyzed for strange/odd/anomalous patterns which are essential aspects of surveillance. But manual analysis of these videos is tedious and laborious. Hence, the development of computer-aided systems for the analysis of UAV based surveillance videos is crucial. Despite this interest, in literature, several computer aided systems are developed focusing only on CCTV based surveillance videos. These methods are designed for single scene scenarios and lack contextual knowledge which is required for multi-scene scenarios. Furthermore, the lack of standard UAV based anomaly detection datasets limits the development of these systems. In this regard, the present work aims at the development of a Computer Aided Decision support system to analyse UAV based surveillance videos. A new UAV based multi-scene anomaly detection dataset is developed with frame-level annotations for the development of computer aided systems. It holistically uses contextual, temporal and appearance features for accurate detection of anomalies. Furthermore, a new inference strategy is proposed that utilizes few anomalous samples along with normal samples to identify better decision boundaries. The proposed method is extensively evaluated on the UAV based anomaly detection dataset and performed competitively with respect to state-of-the-art methods.
Abstract:Most machine learning models operate under the assumption that the training, testing and deployment data is independent and identically distributed (i.i.d.). This assumption doesn't generally hold true in a natural setting. Usually, the deployment data is subject to various types of distributional shifts. The magnitude of a model's performance is proportional to this shift in the distribution of the dataset. Thus it becomes necessary to evaluate a model's uncertainty and robustness to distributional shifts to get a realistic estimate of its expected performance on real-world data. Present methods to evaluate uncertainty and model's robustness are lacking and often fail to paint the full picture. Moreover, most analysis so far has primarily focused on classification tasks. In this paper, we propose more insightful metrics for general regression tasks using the Shifts Weather Prediction Dataset. We also present an evaluation of the baseline methods using these metrics.