Abstract:CO2 emissions from power plants, as significant super emitters, contribute substantially to global warming. Accurate quantification of these emissions is crucial for effective climate mitigation strategies. While satellite-based plume inversion offers a promising approach, challenges arise from data limitations and the complexity of atmospheric conditions. This study addresses these challenges by (a) expanding the available dataset through the integration of NO2 data from Sentinel-5P, generating continuous XCO2 maps, and incorporating real satellite observations from OCO-2/3 for over 71 power plants in data-scarce regions; and (b) employing a customized U-Net model capable of handling diverse spatio-temporal resolutions for emission rate estimation. Our results demonstrate significant improvements in emission rate accuracy compared to previous methods. By leveraging this enhanced approach, we can enable near real-time, precise quantification of major CO2 emission sources, supporting environmental protection initiatives and informing regulatory frameworks.
Abstract:Hyperspectral images offer extensive spectral information about ground objects across multiple spectral bands. However, the large volume of data can pose challenges during processing. Typically, adjacent bands in hyperspectral data are highly correlated, leading to the use of only a few selected bands for various applications. In this work, we present a correlation-based band selection approach for hyperspectral image classification. Our approach calculates the average correlation between bands using correlation coefficients to identify the relationships among different bands. Afterward, we select a subset of bands by analyzing the average correlation and applying a threshold-based method. This allows us to isolate and retain bands that exhibit lower inter-band dependencies, ensuring that the selected bands provide diverse and non-redundant information. We evaluate our proposed approach on two standard benchmark datasets: Pavia University (PA) and Salinas Valley (SA), focusing on image classification tasks. The experimental results demonstrate that our method performs competitively with other standard band selection approaches.