Abstract:Legal documents are indispensable in every country for legal practices and serve as the primary source of information regarding previous cases and employed statutes. In today's world, with an increasing number of judicial cases, it is crucial to systematically categorize past cases into subgroups, which can then be utilized for upcoming cases and practices. Our primary focus in this endeavor was to annotate cases using topic modeling algorithms such as Latent Dirichlet Allocation, Non-Negative Matrix Factorization, and Bertopic for a collection of lengthy legal documents from India and the UK. This step is crucial for distinguishing the generated labels between the two countries, highlighting the differences in the types of cases that arise in each jurisdiction. Furthermore, an analysis of the timeline of cases from India was conducted to discern the evolution of dominant topics over the years.
Abstract:The increasing adoption of solar energy necessitates advanced methodologies for monitoring and maintenance to ensure optimal performance of solar panel installations. A critical component in this context is the accurate segmentation of solar panels from aerial or satellite imagery, which is essential for identifying operational issues and assessing efficiency. This paper addresses the significant challenges in panel segmentation, particularly the scarcity of annotated data and the labour-intensive nature of manual annotation for supervised learning. We explore and apply Self-Supervised Learning (SSL) to solve these challenges. We demonstrate that SSL significantly enhances model generalization under various conditions and reduces dependency on manually annotated data, paving the way for robust and adaptable solar panel segmentation solutions.