Abstract:Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG
Abstract:The Hierarchical Directed Capacitated Arc Routing Problem (HDCARP) is an extension of the Capacitated Arc Routing Problem (CARP), where the arcs of a graph are divided into classes based on their priority. The traversal of these classes is determined by either precedence constraints or a hierarchical objective, resulting in two distinct HDCARP variants. To the best of our knowledge, only one matheuristic has been proposed for these variants, but it performs relatively slowly, particularly for large-scale instances (Ha et al., 2024). In this paper, we propose a fast heuristic to efficiently address the computational challenges of HDCARP. Furthermore, we incorporate Reinforcement Learning (RL) into our heuristic to effectively guide the selection of local search operators, resulting in a hybrid algorithm. We name this hybrid algorithm as the Hybrid Reinforcement Learning and Heuristic Algorithm for Directed Arc Routing (HRDA). The hybrid algorithm adapts to changes in the problem dynamically, using real-time feedback to improve routing strategies and solution's quality by integrating heuristic methods. Extensive computational experiments on artificial instances demonstrate that this hybrid approach significantly improves the speed of the heuristic without deteriorating the solution quality. Our source code is publicly available at: https://github.com/HySonLab/ArcRoute
Abstract:Visual Language Models have demonstrated remarkable capabilities across tasks, including visual question answering and image captioning. However, most models rely on text-based instructions, limiting their effectiveness in human-machine interactions. Moreover, the quality of language models depends on reasoning and prompting techniques, such as COT, which remain underexplored when using speech instructions. To address these challenges, we propose SilVar, a novel end-to-end multimodal model that uses speech instructions for reasoning in visual question answering. In addition, we investigate reasoning techniques with levels including conversational, simple, and complex speech instruction. SilVar is built upon CLIP, Whisper, and LLaMA 3.1-8B, enabling intuitive interactions by allowing users to provide verbal or text instructions. To this end, we introduce a dataset designed to challenge models with speech-based reasoning tasks for object localization. This dataset enhances the model ability to process and explain visual scenes from spoken input, moving beyond object recognition to reasoning-based interactions. The experiments show that SilVar achieves SOTA performance on the MMMU and ScienceQA benchmarks despite the challenge of speech-based instructions. We believe SilVar will inspire next-generation multimodal reasoning models, toward expert artificial general intelligence. Our code and dataset are available here.
Abstract:Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset. To our best knowledge, MultiMed stands as the largest and the first multilingual medical ASR dataset, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes. Secondly, we establish the empirical baselines, present the first reproducible study of multilinguality in medical ASR, conduct a layer-wise ablation study for end-to-end ASR training, and provide the first linguistic analysis for multilingual medical ASR. All code, data, and models are available online https://github.com/leduckhai/MultiMed/tree/master/MultiMed
Abstract:Knowledge graphs (KGs) enhance the performance of large language models (LLMs) and search engines by providing structured, interconnected data that improves reasoning and context-awareness. However, KGs only focus on text data, thereby neglecting other modalities such as speech. In this work, we introduce wav2graph, the first framework for supervised learning knowledge graph from speech data. Our pipeline are straightforward: (1) constructing a KG based on transcribed spoken utterances and a named entity database, (2) converting KG into embedding vectors, and (3) training graph neural networks (GNNs) for node classification and link prediction tasks. Through extensive experiments conducted in inductive and transductive learning contexts using state-of-the-art GNN models, we provide baseline results and error analysis for node classification and link prediction tasks on human transcripts and automatic speech recognition (ASR) transcripts, including evaluations using both encoder-based and decoder-based node embeddings, as well as monolingual and multilingual acoustic pre-trained models. All related code, data, and models are published online.
Abstract:Transparency in AI decision-making is crucial in healthcare due to the severe consequences of errors, and this is important for building trust among AI and users in sentiment analysis task. Incorporating reasoning capabilities helps Large Language Models (LLMs) understand human emotions within broader contexts, handle nuanced and ambiguous language, and infer underlying sentiments that may not be explicitly stated. In this work, we introduce a new task - Sentiment Reasoning - for both speech and text modalities, along with our proposed multimodal multitask framework and dataset. Our study showed that rationale-augmented training enhances model performance in sentiment classification across both human transcript and ASR settings. Also, we found that the generated rationales typically exhibit different vocabularies compared to human-generated rationales, but maintain similar semantics. All code, data (English-translated and Vietnamese) and models are published online: https://github.com/leduckhai/MultiMed
Abstract:Vision-language models have been extensively explored across a wide range of tasks, achieving satisfactory performance; however, their application in medical imaging remains underexplored. In this work, we propose a unified framework - LiteGPT - for the medical imaging. We leverage multiple pre-trained visual encoders to enrich information and enhance the performance of vision-language models. To the best of our knowledge, this is the first study to utilize vision-language models for the novel task of joint localization and classification in medical images. Besides, we are pioneers in providing baselines for disease localization in chest X-rays. Finally, we set new state-of-the-art performance in the image classification task on the well-benchmarked VinDr-CXR dataset. All code and models are publicly available online: https://github.com/leduckhai/LiteGPT
Abstract:In doctor-patient conversations, identifying medically relevant information is crucial, posing the need for conversation summarization. In this work, we propose the first deployable real-time speech summarization system for real-world applications in industry, which generates a local summary after every N speech utterances within a conversation and a global summary after the end of a conversation. Our system could enhance user experience from a business standpoint, while also reducing computational costs from a technical perspective. Secondly, we present VietMed-Sum which, to our knowledge, is the first speech summarization dataset for medical conversations. Thirdly, we are the first to utilize LLM and human annotators collaboratively to create gold standard and synthetic summaries for medical conversation summarization. Finally, we present baseline results of state-of-the-art models on VietMed-Sum. All code, data (English-translated and Vietnamese) and models are available online: https://github.com/leduckhai/MultiMed
Abstract:We propose Cormorant, a rotationally covariant neural network architecture for learning the behavior and properties of complex many-body physical systems. We apply these networks to molecular systems with two goals: learning atomic potential energy surfaces for use in Molecular Dynamics simulations, and learning ground state properties of molecules calculated by Density Functional Theory. Some of the key features of our network are that (a) each neuron explicitly corresponds to a subset of atoms; (b) the activation of each neuron is covariant to rotations, ensuring that overall the network is fully rotationally invariant. Furthermore, the non-linearity in our network is based upon tensor products and the Clebsch-Gordan decomposition, allowing the network to operate entirely in Fourier space. Cormorant significantly outperforms competing algorithms in learning molecular Potential Energy Surfaces from conformational geometries in the MD-17 dataset, and is competitive with other methods at learning geometric, energetic, electronic, and thermodynamic properties of molecules on the GDB-9 dataset.