Proteins are complex biomolecules that play a central role in various biological processes, making them critical targets for breakthroughs in molecular biology, medical research, and drug discovery. Deciphering their intricate, hierarchical structures, and diverse functions is essential for advancing our understanding of life at the molecular level. Protein Representation Learning (PRL) has emerged as a transformative approach, enabling the extraction of meaningful computational representations from protein data to address these challenges. In this paper, we provide a comprehensive review of PRL research, categorizing methodologies into five key areas: feature-based, sequence-based, structure-based, multimodal, and complex-based approaches. To support researchers in this rapidly evolving field, we introduce widely used databases for protein sequences, structures, and functions, which serve as essential resources for model development and evaluation. We also explore the diverse applications of these approaches in multiple domains, demonstrating their broad impact. Finally, we discuss pressing technical challenges and outline future directions to advance PRL, offering insights to inspire continued innovation in this foundational field.