Abstract:Accurate identification of interactions between protein residues and ligand functional groups is essential to understand molecular recognition and guide rational drug design. Existing deep learning approaches for protein-ligand interpretability often rely on 3D structural input or use distance-based contact labels, limiting both their applicability and biological relevance. We introduce LINKER, the first sequence-based model to predict residue-functional group interactions in terms of biologically defined interaction types, using only protein sequences and the ligand SMILES as input. LINKER is trained with structure-supervised attention, where interaction labels are derived from 3D protein-ligand complexes via functional group-based motif extraction. By abstracting ligand structures into functional groups, the model focuses on chemically meaningful substructures while predicting interaction types rather than mere spatial proximity. Crucially, LINKER requires only sequence-level input at inference time, enabling large-scale application in settings where structural data is unavailable. Experiments on the LP-PDBBind benchmark demonstrate that structure-informed supervision over functional group abstractions yields interaction predictions closely aligned with ground-truth biochemical annotations.
Abstract:Proteins are complex biomolecules that play a central role in various biological processes, making them critical targets for breakthroughs in molecular biology, medical research, and drug discovery. Deciphering their intricate, hierarchical structures, and diverse functions is essential for advancing our understanding of life at the molecular level. Protein Representation Learning (PRL) has emerged as a transformative approach, enabling the extraction of meaningful computational representations from protein data to address these challenges. In this paper, we provide a comprehensive review of PRL research, categorizing methodologies into five key areas: feature-based, sequence-based, structure-based, multimodal, and complex-based approaches. To support researchers in this rapidly evolving field, we introduce widely used databases for protein sequences, structures, and functions, which serve as essential resources for model development and evaluation. We also explore the diverse applications of these approaches in multiple domains, demonstrating their broad impact. Finally, we discuss pressing technical challenges and outline future directions to advance PRL, offering insights to inspire continued innovation in this foundational field.
Abstract:Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG