Abstract:This paper introduces a novel multiscale object-based graph neural network called MOB-GCN for hyperspectral image (HSI) classification. The central aim of this study is to enhance feature extraction and classification performance by utilizing multiscale object-based image analysis (OBIA). Traditional pixel-based methods often suffer from low accuracy and speckle noise, while single-scale OBIA approaches may overlook crucial information of image objects at different levels of detail. MOB-GCN overcomes these challenges by extracting and integrating features from multiple segmentation scales, leveraging the Multiresolution Graph Network (MGN) architecture to capture both fine-grained and global spatial patterns. MOB-GCN addresses this issue by extracting and integrating features from multiple segmentation scales to improve classification results using the Multiresolution Graph Network (MGN) architecture that can model fine-grained and global spatial patterns. By constructing a dynamic multiscale graph hierarchy, MOB-GCN offers a more comprehensive understanding of the intricate details and global context of HSIs. Experimental results demonstrate that MOB-GCN consistently outperforms single-scale graph convolutional networks (GCNs) in terms of classification accuracy, computational efficiency, and noise reduction, particularly when labeled data is limited. The implementation of MOB-GCN is publicly available at https://github.com/HySonLab/MultiscaleHSI
Abstract:3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.
Abstract:The retrieval of 3D objects has gained significant importance in recent years due to its broad range of applications in computer vision, computer graphics, virtual reality, and augmented reality. However, the retrieval of 3D objects presents significant challenges due to the intricate nature of 3D models, which can vary in shape, size, and texture, and have numerous polygons and vertices. To this end, we introduce a novel SHREC challenge track that focuses on retrieving relevant 3D animal models from a dataset using sketch queries and expedites accessing 3D models through available sketches. Furthermore, a new dataset named ANIMAR was constructed in this study, comprising a collection of 711 unique 3D animal models and 140 corresponding sketch queries. Our contest requires participants to retrieve 3D models based on complex and detailed sketches. We receive satisfactory results from eight teams and 204 runs. Although further improvement is necessary, the proposed task has the potential to incentivize additional research in the domain of 3D object retrieval, potentially yielding benefits for a wide range of applications. We also provide insights into potential areas of future research, such as improving techniques for feature extraction and matching, and creating more diverse datasets to evaluate retrieval performance.