Abstract:Visual Question Answering (VQA) has recently emerged as a potential research domain, captivating the interest of many in the field of artificial intelligence and computer vision. Despite the prevalence of approaches in English, there is a notable lack of systems specifically developed for certain languages, particularly Vietnamese. This study aims to bridge this gap by conducting comprehensive experiments on the Vietnamese Visual Question Answering (ViVQA) dataset, demonstrating the effectiveness of our proposed model. In response to community interest, we have developed a model that enhances image representation capabilities, thereby improving overall performance in the ViVQA system. Specifically, our model integrates the Bootstrapping Language-Image Pre-training with frozen unimodal models (BLIP-2) and the convolutional neural network EfficientNet to extract and process both local and global features from images. This integration leverages the strengths of transformer-based architectures for capturing comprehensive contextual information and convolutional networks for detailed local features. By freezing the parameters of these pre-trained models, we significantly reduce the computational cost and training time, while maintaining high performance. This approach significantly improves image representation and enhances the performance of existing VQA systems. We then leverage a multi-modal fusion module based on a general-purpose multi-modal foundation model (BEiT-3) to fuse the information between visual and textual features. Our experimental findings demonstrate that our model surpasses competing baselines, achieving promising performance. This is particularly evident in its accuracy of $71.04\%$ on the test set of the ViVQA dataset, marking a significant advancement in our research area. The code is available at https://github.com/nngocson2002/ViVQA.
Abstract:Vision-language models have been extensively explored across a wide range of tasks, achieving satisfactory performance; however, their application in medical imaging remains underexplored. In this work, we propose a unified framework - LiteGPT - for the medical imaging. We leverage multiple pre-trained visual encoders to enrich information and enhance the performance of vision-language models. To the best of our knowledge, this is the first study to utilize vision-language models for the novel task of joint localization and classification in medical images. Besides, we are pioneers in providing baselines for disease localization in chest X-rays. Finally, we set new state-of-the-art performance in the image classification task on the well-benchmarked VinDr-CXR dataset. All code and models are publicly available online: https://github.com/leduckhai/LiteGPT