Abstract:Vision-language models have been extensively explored across a wide range of tasks, achieving satisfactory performance; however, their application in medical imaging remains underexplored. In this work, we propose a unified framework - LiteGPT - for the medical imaging. We leverage multiple pre-trained visual encoders to enrich information and enhance the performance of vision-language models. To the best of our knowledge, this is the first study to utilize vision-language models for the novel task of joint localization and classification in medical images. Besides, we are pioneers in providing baselines for disease localization in chest X-rays. Finally, we set new state-of-the-art performance in the image classification task on the well-benchmarked VinDr-CXR dataset. All code and models are publicly available online: https://github.com/leduckhai/LiteGPT
Abstract:Most domain adaptation (DA) methods are based on either a convolutional neural networks (CNNs) or a vision transformers (ViTs). They align the distribution differences between domains as encoders without considering their unique characteristics. For instance, ViT excels in accuracy due to its superior ability to capture global representations, while CNN has an advantage in capturing local representations. This fact has led us to design a hybrid method to fully take advantage of both ViT and CNN, called Explicitly Class-specific Boundaries (ECB). ECB learns CNN on ViT to combine their distinct strengths. In particular, we leverage ViT's properties to explicitly find class-specific decision boundaries by maximizing the discrepancy between the outputs of the two classifiers to detect target samples far from the source support. In contrast, the CNN encoder clusters target features based on the previously defined class-specific boundaries by minimizing the discrepancy between the probabilities of the two classifiers. Finally, ViT and CNN mutually exchange knowledge to improve the quality of pseudo labels and reduce the knowledge discrepancies of these models. Compared to conventional DA methods, our ECB achieves superior performance, which verifies its effectiveness in this hybrid model. The project website can be found https://dotrannhattuong.github.io/ECB/website/.
Abstract:In recent years, many mammographic image analysis methods have been introduced for improving cancer classification tasks. Two major issues of mammogram classification tasks are leveraging multi-view mammographic information and class-imbalance handling. In the first problem, many multi-view methods have been released for concatenating features of two or more views for the training and inference stage. Having said that, most multi-view existing methods are not explainable in the meaning of feature fusion, and treat many views equally for diagnosing. Our work aims to propose a simple but novel method for enhancing examined view (main view) by leveraging low-level feature information from the auxiliary view (ipsilateral view) before learning the high-level feature that contains the cancerous features. For the second issue, we also propose a simple but novel malignant mammogram synthesis framework for upsampling minor class samples. Our easy-to-implement and no-training framework has eliminated the current limitation of the CutMix algorithm which is unreliable synthesized images with random pasted patches, hard-contour problems, and domain shift problems. Our results on VinDr-Mammo and CMMD datasets show the effectiveness of our two new frameworks for both multi-view training and synthesizing mammographic images, outperforming the previous conventional methods in our experimental settings.