Abstract:Cardiovascular disease arises from interactions between inherited risk, molecular programmes, and tissue-scale remodelling that are observed clinically through imaging. Health systems now routinely generate large volumes of cardiac MRI, CT and echocardiography together with bulk, single-cell and spatial transcriptomics, yet these data are still analysed in separate pipelines. This review examines joint representations that link cardiac imaging phenotypes to transcriptomic and spatially resolved molecular states. An imaging-anchored perspective is adopted in which echocardiography, cardiac MRI and CT define a spatial phenotype of the heart, and bulk, single-cell and spatial transcriptomics provide cell-type- and location-specific molecular context. The biological and technical characteristics of these modalities are first summarised, and representation-learning strategies for each are outlined. Multimodal fusion approaches are reviewed, with emphasis on handling missing data, limited sample size, and batch effects. Finally, integrative pipelines for radiogenomics, spatial molecular alignment, and image-based prediction of gene expression are discussed, together with common failure modes, practical considerations, and open challenges. Spatial multiomics of human myocardium and atherosclerotic plaque, single-cell and spatial foundation models, and multimodal medical foundation models are collectively bringing imaging-anchored multiomics closer to large-scale cardiovascular translation.
Abstract:In recent years, many mammographic image analysis methods have been introduced for improving cancer classification tasks. Two major issues of mammogram classification tasks are leveraging multi-view mammographic information and class-imbalance handling. In the first problem, many multi-view methods have been released for concatenating features of two or more views for the training and inference stage. Having said that, most multi-view existing methods are not explainable in the meaning of feature fusion, and treat many views equally for diagnosing. Our work aims to propose a simple but novel method for enhancing examined view (main view) by leveraging low-level feature information from the auxiliary view (ipsilateral view) before learning the high-level feature that contains the cancerous features. For the second issue, we also propose a simple but novel malignant mammogram synthesis framework for upsampling minor class samples. Our easy-to-implement and no-training framework has eliminated the current limitation of the CutMix algorithm which is unreliable synthesized images with random pasted patches, hard-contour problems, and domain shift problems. Our results on VinDr-Mammo and CMMD datasets show the effectiveness of our two new frameworks for both multi-view training and synthesizing mammographic images, outperforming the previous conventional methods in our experimental settings.