Abstract:Image segmentation is a common and challenging task in autonomous driving. Availability of sufficient pixel-level annotations for the training data is a hurdle. Active learning helps learning from small amounts of data by suggesting the most promising samples for labeling. In this work, we propose a new pool-based method for active learning, which proposes promising patches extracted from full image, in each acquisition step. The problem is framed in an exploration-exploitation framework by combining an embedding based on Uniform Manifold Approximation to model representativeness with entropy as uncertainty measure to model informativeness. We applied our proposed method to the autonomous driving datasets CamVid and Cityscapes and performed a quantitative comparison with state-of-the-art baselines. We find that our active learning method achieves better performance compared to previous methods.
Abstract:Despite much recent work, detecting out-of-distribution (OOD) inputs and adversarial attacks (AA) for computer vision models remains a challenge. In this work, we introduce a novel technique, DAAIN, to detect OOD inputs and AA for image segmentation in a unified setting. Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution. We equip the density estimator with a classification head to discriminate between regular and anomalous inputs. To deal with the high-dimensional activation-space of typical segmentation networks, we subsample them to obtain a homogeneous spatial and layer-wise coverage. The subsampling pattern is chosen once per monitored model and kept fixed for all inputs. Since the attacker has access to neither the detection model nor the sampling key, it becomes harder for them to attack the segmentation network, as the attack cannot be backpropagated through the detector. We demonstrate the effectiveness of our approach using an ESPNet trained on the Cityscapes dataset as segmentation model, an affine Normalizing Flow as density estimator and use blue noise to ensure homogeneous sampling. Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
Abstract:Developing, scaling, and deploying modern Machine Learning solutions remains challenging for small- and middle-sized enterprises (SMEs). This is due to a high entry barrier of building and maintaining a dedicated IT team as well as the difficulties of real-world data (RWD) compared to standard benchmark data. To address this challenge, we discuss the implementation and concepts of Chameleon, a semi-AutoML framework. The goal of Chameleon is fast and scalable development and deployment of production-ready machine learning systems into the workflow of SMEs. We first discuss the RWD challenges faced by SMEs. After, we outline the central part of the framework which is a model and loss-function zoo with RWD-relevant defaults. Subsequently, we present how one can use a templatable framework in order to automate the experiment iteration cycle, as well as close the gap between development and deployment. Finally, we touch on our testing framework component allowing us to investigate common model failure modes and support best practices of model deployment governance.
Abstract:Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of $\kappa$ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labelled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task.
Abstract:The progression of breast cancer can be quantified in lymph node whole-slide images (WSIs). We describe a novel method for effectively performing classification of whole-slide images and patient level breast cancer grading. Our method utilises a deep neural network. The method performs classification on small patches and uses model averaging for boosting. In the first step, region of interest patches are determined and cropped automatically by color thresholding and then classified by the deep neural network. The classification results are used to determine a slide level class and for further aggregation to predict a patient level grade. Fast processing speed of our method enables high throughput image analysis.