Abstract:Despite much recent work, detecting out-of-distribution (OOD) inputs and adversarial attacks (AA) for computer vision models remains a challenge. In this work, we introduce a novel technique, DAAIN, to detect OOD inputs and AA for image segmentation in a unified setting. Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution. We equip the density estimator with a classification head to discriminate between regular and anomalous inputs. To deal with the high-dimensional activation-space of typical segmentation networks, we subsample them to obtain a homogeneous spatial and layer-wise coverage. The subsampling pattern is chosen once per monitored model and kept fixed for all inputs. Since the attacker has access to neither the detection model nor the sampling key, it becomes harder for them to attack the segmentation network, as the attack cannot be backpropagated through the detector. We demonstrate the effectiveness of our approach using an ESPNet trained on the Cityscapes dataset as segmentation model, an affine Normalizing Flow as density estimator and use blue noise to ensure homogeneous sampling. Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
Abstract:Convolutional neural networks have achieved astonishing results in different application areas. Various methods that allow us to use these models on mobile and embedded devices have been proposed. Especially binary neural networks are a promising approach for devices with low computational power. However, training accurate binary models from scratch remains a challenge. Previous work often uses prior knowledge from full-precision models and complex training strategies. In our work, we focus on increasing the performance of binary neural networks without such prior knowledge and a much simpler training strategy. In our experiments we show that we are able to achieve state-of-the-art results on standard benchmark datasets. Further, to the best of our knowledge, we are the first to successfully adopt a network architecture with dense connections for binary networks, which lets us improve the state-of-the-art even further.