Abstract:Learning diverse policies for non-prehensile manipulation is essential for improving skill transfer and generalization to out-of-distribution scenarios. In this work, we enhance exploration through a two-fold approach within a hybrid framework that tackles both discrete and continuous action spaces. First, we model the continuous motion parameter policy as a diffusion model, and second, we incorporate this into a maximum entropy reinforcement learning framework that unifies both the discrete and continuous components. The discrete action space, such as contact point selection, is optimized through Q-value function maximization, while the continuous part is guided by a diffusion-based policy. This hybrid approach leads to a principled objective, where the maximum entropy term is derived as a lower bound using structured variational inference. We propose the Hybrid Diffusion Policy algorithm (HyDo) and evaluate its performance on both simulation and zero-shot sim2real tasks. Our results show that HyDo encourages more diverse behavior policies, leading to significantly improved success rates across tasks - for example, increasing from 53% to 72% on a real-world 6D pose alignment task. Project page: https://leh2rng.github.io/hydo
Abstract:Simulating dynamic physical interactions is a critical challenge across multiple scientific domains, with applications ranging from robotics to material science. For mesh-based simulations, Graph Network Simulators (GNSs) pose an efficient alternative to traditional physics-based simulators. Their inherent differentiability and speed make them particularly well-suited for inverse design problems. Yet, adapting to new tasks from limited available data is an important aspect for real-world applications that current methods struggle with. We frame mesh-based simulation as a meta-learning problem and use a recent Bayesian meta-learning method to improve GNSs adaptability to new scenarios by leveraging context data and handling uncertainties. Our approach, latent task-specific graph network simulator, uses non-amortized task posterior approximations to sample latent descriptions of unknown system properties. Additionally, we leverage movement primitives for efficient full trajectory prediction, effectively addressing the issue of accumulating errors encountered by previous auto-regressive methods. We validate the effectiveness of our approach through various experiments, performing on par with or better than established baseline methods. Movement primitives further allow us to accommodate various types of context data, as demonstrated through the utilization of point clouds during inference. By combining GNSs with meta-learning, we bring them closer to real-world applicability, particularly in scenarios with smaller datasets.
Abstract:Roboy 3.0 is an open-source tendon-driven humanoid robot that mimics the musculoskeletal system of the human body. Roboy 3.0 is being developed as a remote robotic body - or a robotic avatar - for humans to achieve remote physical presence. Artificial muscles and tendons allow it to closely resemble human morphology with 3-DoF neck, shoulders and wrists. Roboy 3.0 3-DoF joints are implemented as ball-and-socket joints. While industry provides a clear solution for 1-DoF joint pose sensing, it is not the case for the ball-and-socket joint type. In this paper we present a custom solution to estimate the pose of a ball-and-socket joint. We embed an array of magnets into the ball and an array of 3D magnetic sensors into the socket. We then, based on the changes in the magnetic field as the joint rotates, are able to estimate the orientation of the joint. We evaluate the performance of two neural network approaches using the LSTM and Bayesian-filter like DVBF. Results show that in order to achieve the same mean square error (MSE) DVBFs require significantly more time training and hyperparameter tuning compared to LSTMs, while DVBF cope with sensor noise better. Both methods are capable of real-time joint pose estimation at 37 Hz with MSE of around 0.03 rad for all three degrees of freedom combined. The LSTM model is deployed and used for joint pose estimation of Roboy 3.0's shoulder and neck joints. The software implementation and PCB designs are open-sourced under https://github.com/Roboy/ball_and_socket_estimator
Abstract:We introduce a Bayesian (deep) model-based reinforcement learning method (RoMBRL) that can capture model uncertainty to achieve sample-efficient policy optimisation. We propose to formulate the model-based policy optimisation problem as a Bayes-adaptive Markov decision process (BAMDP). RoMBRL maintains model uncertainty via belief distributions through a deep Bayesian neural network whose samples are generated via stochastic gradient Hamiltonian Monte Carlo. Uncertainty is propagated through simulations controlled by sampled models and history-based policies. As beliefs are encoded in visited histories, we propose a history-based policy network that can be end-to-end trained to generalise across history space and will be trained using recurrent Trust-Region Policy Optimisation. We show that RoMBRL outperforms existing approaches on many challenging control benchmark tasks in terms of sample complexity and task performance. The source code of this paper is also publicly available on https://github.com/thobotics/RoMBRL.
Abstract:Aspect-based Opinion Summary (AOS), consisting of aspect discovery and sentiment classification steps, has recently been emerging as one of the most crucial data mining tasks in e-commerce systems. Along this direction, the LDA-based model is considered as a notably suitable approach, since this model offers both topic modeling and sentiment classification. However, unlike traditional topic modeling, in the context of aspect discovery it is often required some initial seed words, whose prior knowledge is not easy to be incorporated into LDA models. Moreover, LDA approaches rely on sampling methods, which need to load the whole corpus into memory, making them hardly scalable. In this research, we study an alternative approach for AOS problem, based on Autoencoding Variational Inference (AVI). Firstly, we introduce the Autoencoding Variational Inference for Aspect Discovery (AVIAD) model, which extends the previous work of Autoencoding Variational Inference for Topic Models (AVITM) to embed prior knowledge of seed words. This work includes enhancement of the previous AVI architecture and also modification of the loss function. Ultimately, we present the Autoencoding Variational Inference for Joint Sentiment/Topic (AVIJST) model. In this model, we substantially extend the AVI model to support the JST model, which performs topic modeling for corresponding sentiment. The experimental results show that our proposed models enjoy higher topic coherent, faster convergence time and better accuracy on sentiment classification, as compared to their LDA-based counterparts.