Abstract:There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.
Abstract:Monitoring organic matter is pivotal for maintaining soil health and can help inform sustainable soil management practices. While sensor-based soil information offers higher-fidelity and reliable insights into organic matter changes, sampling and measuring sensor data is cost-prohibitive. We propose a multi-modal, scalable framework that can estimate organic matter from remote sensing data, a more readily available data source while leveraging sparse soil information for improving generalization. Using the sensor data, we preserve underlying causal relations among sensor attributes and organic matter. Simultaneously we leverage inherent structure in the data and train the model to discriminate among domains using contrastive learning. This causal and contrastive constraint minimization ensures improved generalization and adaptation to other domains. We also shed light on the interpretability of the framework by identifying attributes that are important for improving generalization. Identifying these key soil attributes that affect organic matter will aid in efforts to standardize data collection efforts.
Abstract:An improved understanding of soil can enable more sustainable land-use practices. Nevertheless, soil is called a complex, living medium due to the complex interaction of different soil processes that limit our understanding of soil. Process-based models and analyzing observed data provide two avenues for improving our understanding of soil processes. Collecting observed data is cost-prohibitive but reflects real-world behavior, while process-based models can be used to generate ample synthetic data which may not be representative of reality. We propose a framework, knowledge-guided representation learning, and causal structure learning (KGRCL), to accelerate scientific discoveries in soil science. The framework improves representation learning for simulated soil processes via conditional distribution matching with observed soil processes. Simultaneously, the framework leverages both observed and simulated data to learn a causal structure among the soil processes. The learned causal graph is more representative of ground truth than other graphs generated from other causal discovery methods. Furthermore, the learned causal graph is leveraged in a supervised learning setup to predict the impact of fertilizer use and changing weather on soil carbon. We present the results in five different locations to show the improvement in the prediction performance in out-of-sample and few-shots setting.
Abstract:Agriculture is at the heart of the solution to achieve sustainability in feeding the world population, but advancing our understanding on how agricultural output responds to climatic variability is still needed. Precision Agriculture (PA), which is a management strategy that uses technology such as remote sensing, Geographical Information System (GIS), and machine learning for decision making in the field, has emerged as a promising approach to enhance crop production, increase yield, and reduce water and nutrient losses and environmental impacts. In this context, multiple models to predict agricultural phenotypes, such as crop yield, from genomics (G), environment (E), weather and soil, and field management practices (M) have been developed. These models have traditionally been based on mechanistic or statistical approaches. However, AI approaches are intrinsically well-suited to model complex interactions and have more recently been developed, outperforming classical methods. Here, we present a Natural Language Processing (NLP)-based neural network architecture to process the G, E and M inputs and their interactions. We show that by modeling DNA as natural language, our approach performs better than previous approaches when tested for new environments and similarly to other approaches for unseen seed varieties.
Abstract:Measuring and monitoring soil organic carbon is critical for agricultural productivity and for addressing critical environmental problems. Soil organic carbon not only enriches nutrition in soil, but also has a gamut of co-benefits such as improving water storage and limiting physical erosion. Despite a litany of work in soil organic carbon estimation, current approaches do not generalize well across soil conditions and management practices. We empirically show that explicit modeling of cause-and-effect relationships among the soil processes improves the out-of-distribution generalizability of prediction models. We provide a comparative analysis of soil organic carbon estimation models where the skeleton is estimated using causal discovery methods. Our framework provide an average improvement of 81% in test mean squared error and 52% in test mean absolute error.
Abstract:Food protein digestibility and bioavailability are critical aspects in addressing human nutritional demands, particularly when seeking sustainable alternatives to animal-based proteins. In this study, we propose a machine learning approach to predict the true ileal digestibility coefficient of food items. The model makes use of a unique curated dataset that combines nutritional information from different foods with FASTA sequences of some of their protein families. We extracted the biochemical properties of the proteins and combined these properties with embeddings from a Transformer-based protein Language Model (pLM). In addition, we used SHAP to identify features that contribute most to the model prediction and provide interpretability. This first AI-based model for predicting food protein digestibility has an accuracy of 90% compared to existing experimental techniques. With this accuracy, our model can eliminate the need for lengthy in-vivo or in-vitro experiments, making the process of creating new foods faster, cheaper, and more ethical.